
JLS Construction of IO

In this lecture, we will see a construction of “slow XIO” (more accurately, slow, weakly succinct func-
tional encryption) due to the breakthrough work of Jain, Lin, and Sahai [JLS21, JLS22]. This construction
can be directly modified to get “fast XIO”, and thus IO (as seen in last lecture), but this gets quite technical.
We present the core ideas in [JLS22] today without getting needlessly detailed.

At a high level, the construction has three steps:

1. Starting point: degree-2 functional encryption (D2FE) over ℤ𝑝 , under bilinear maps assumptions.
Today, we will assume this without proof.

2. Boosting degree-2 functional encryption to local, slow functional encryption (LSFE) (or NC0 slow
functional encryption), assuming (large field) LPN.

3. Boosting local slow functional encryption to slow functional encryption for all circuits (SFE), as-
suming PRGs in NC

0.

In the previous lecture, we saw how to bootstrap fast XIO into IO, and in the next lecture, we will see
how to construct D2FE.

1 Starting Point: Degree-2 Functional Encryption

Thankfully, bilinear maps assumptions imply functional encryption for degree-2 computations over ℤ𝑝

(D2FE), where 𝑝 is a prime. In fact, something more is true, which allows degree-𝑂(1) computations in
some “public” input PI, which does not need to be hidden, and degree-2 computations in some “secret”
input SI, which is hidden as in the usual definition of functional encryption [Wee20].

One might ask: what do degree-2 computations (over ℤ𝑝) really buy us? Consider the following ex-
ample.

Example. Let 𝐀,𝐁 ∈ ℤ
𝓁×𝓁

𝑝
be matrices. For all (𝑖, 𝑗) ∈ [𝓁]

2, the function mult𝑖,𝑗 ∶ ℤ
2𝓁

2

𝑝
→ ℤ𝑝 given by

mult𝑖,𝑗 (𝐀,𝐁) = (𝐀 ⋅ 𝐁)𝑖,𝑗

is degree-2 in its input, where ⋅ denotes matrix multiplication over ℤ𝑝 .

1.1 Definition of D2FE

Definition 1 (Degree-2 Functional Encryption). A degree-2 functional encryption scheme (D2FE) consists
of three algorithms:

• D2FE.Setup(1𝜆, 𝑓 ∶ ℤ
|PI|
𝑝

× ℤ
|SI|
𝑝

→ ℤ
𝑚

𝑝
): Outputs a master public key mpk and a functional secret key

sk𝑓 , which is assumed to include a description of 𝑓 without loss of generality. We require that each
output coordinate of the function 𝑓 has total degree 𝑑 = 𝑂(1) in PI and total degree 2 in SI.

• D2FE.Enc(mpk, PI, SI): Outputs a ciphertext ct.

• D2FE.Dec(sk𝑓 , ct): Outputs a value in ℤ
𝑚

𝑝
.

1

We require a few properties of these algorithms.

Correctness: For any PI, SI, and any function 𝑓 ∶ ℤ
|PI|
𝑝

× ℤ
|SI|
𝑝

→ ℤ
𝑚

𝑝
, as long as 𝑓 (PI, SI) ∈ {0, 1}

𝑚, then for
(mpk, sk𝑓) ← D2FE.Setup(1𝜆, 𝑓),

Pr [D
2FE.Dec(sk𝑓 ,D

2FE.Enc(mpk, PI, SI)) = 𝑓 (PI, SI)] = 1.

Linear Efficiency: The size of the circuit D2FE.Enc(mpk, ⋅, ⋅) is (|PI| + |SI|) ⋅ poly(𝜆). In particular, for
ct ← D2FE.Enc(mpk, PI, SI), we have |ct| ≤ (|PI| + |SI|) ⋅ poly(𝜆).

Security: There is a constant 𝑐 > 0 and a p.p.t. simulator 𝑆 such that we have the following indistingiusha-
bility, with advantage at most 2−Ω(𝜆

𝑐
) to all p.p.t. adversaries: for all PI, SI and all 𝑓 ∶ ℤ

|PI|
𝑝

× ℤ
|SI|
𝑝

→ ℤ
𝑚

𝑝
of

degree (𝑂(1), 2),
(mpk, sk𝑓 , PI,D

2FE.Enc(mpk, PI, SI)) ≈𝑐 𝑆(𝑓 , PI, 𝑓 (PI, SI)),

where (mpk, sk𝑓) ← D2FE.Setup(1𝜆, 𝑓).

Throughout this whole lecture, we will assume that all input and output lengths of the various func-
tional encryption schemes are upper- and lower-bounded by a polynomial in 𝜆.

2 From D2FE to LSFE

The key assumption in this transformation is Learning Parity with Noise (LPN).

2.1 Learning Parity with Noise (LPN)

LPN is very similar to LWE; the only difference is the distribution of the noise. In LWE, the noise is small
(e.g., in 𝓁2 or 𝓁∞ norm), but here, the noise is sparse (with high probability), i.e., small in the 𝓁0 “norm.”1
This sparsity will be critical in the construction.

Let 𝑝 ∈ ℕ. Let Bern𝑝(𝜂), supported over ℤ𝑝 , denote the distribution that is 0 with probability 1 − 𝜂,
and uniformly random over ℤ𝑝 ⧵ {0} with probability 𝜂. Using this notation, we define the learning parity
with noise (LPN) assumption over large fields as follows.

Assumption 2 (Learning Parity with Noise over large fields). There exists a constant 𝛿 > 0 such that for all
𝑐1, 𝑐2 > 0, where 𝑛 = 𝑛(𝓁) = 𝓁

𝑐1 and prime 𝑝 ≈ 2
𝓁
𝑐
2 , we have the following indistinguishability. For 𝐀 ← ℤ

𝑛×𝓁

𝑝
,

𝐬 ← ℤ
𝓁

𝑝
, 𝐞 ← Bern𝑝(𝓁

−𝛿
)
𝑛, and 𝐛 ← ℤ

𝑛

𝑝
,

(𝐀,𝐀𝐬 + 𝐞) ≈𝑐 (𝐀, 𝐛),

where addition is done over ℤ𝑝 . The sub-exponential version of this assumption holds if the above indistin-
guishability means that all non-uniform p.p.t. distinguishers have at most sub-exponential advantage.

2.2 Algebraic Compression

We now show a general way to compress sparse errors, in such a way that expanding the errors back is
a degree-2 operation. This is arguably the main trick in the [JLS21, JLS22] construction. We say a vector
𝑧 ∈ ℤ

𝑚

𝑝
is 𝑘-sparse if it has at most 𝑘 non-zero entries.

1The 𝓁0 “norm” is not truly a norm, as it does not satisfy homogeneity.

2

Lemma 3. Let 𝜏 ∈ (0, 1) be an arbitrary constant. There are efficient algorithms Compress ∶ ℤ
𝑚

𝑝
→ ℤ

𝑚
1−𝜏/5

𝑝

and Expand ∶ ℤ
𝑚
1−𝜏/5

𝑝
→ ℤ

𝑚

𝑝
(using shared randomness) with the following properties:

1. For all 𝑚1−𝜏-sparse 𝑧 ∈ ℤ
𝑚

𝑝
, Expand(Compress(𝑧)) = 𝑧 (with all but sub-exponentially small failure

probability);

2. The function Expand ∶ ℤ
𝑚
1−𝜏/5

𝑝
→ ℤ

𝑚

𝑝
is degree-2 over ℤ𝑝 .

Proof. We start with a “warm-up” version where 𝜏 = 1/2 + 𝛼 for some 𝛼 > 0. By breaking up 𝑧 into
chunks, can interpret 𝑧 ∈ ℤ

𝑚

𝑝
as a matrix mat(𝑧) ∈ ℤ

√

𝑚×

√

𝑚

𝑝
. Since 𝜏 = 1/2 + 𝛼, we know that any input 𝑧

has sparsity𝑚1−𝜏
= 𝑚

1/2−𝛼 . In particular, since mat(𝑧) has at most𝑚1/2−𝛼 non-zero entries, rank(mat(𝑧)) ≤

𝑚
1/2−𝛼

≪

√

𝑚. By standard linear algebra facts, this means we have the matrix decomposition

mat(𝑧) = 𝑈𝑉 , 𝑈 ∈ ℤ

√

𝑚×𝑚
1/2−𝛼

𝑝
, 𝑉 ∈ ℤ

𝑚
1/2−𝛼

×

√

𝑚

𝑝
.

This directly leads to Compress and Expand algorithms:

Compress(𝑧) = (𝑈, 𝑉),

Expand(𝑈, 𝑉) = vec(𝑈 ⋅ 𝑉),

where ⋅ is matrix multiplication and vec() denotes interpreting a matrix as a list of entries. We now verify
all of the properties. Item 1 is clear by construction. For the compression size, we have

|Compress(𝑧)| = |𝑈 | + |𝑉 | = 2

√

𝑚 ⋅ 𝑚
1/2−𝛼

= 2𝑚
1−𝛼

= 𝑚
1−Ω(1)

.

For Item 2, note that Expand() is just multiplying two input matrices. In particular, each entry is degree-2
in the input.

Now we do the general case. Instead of directly interpreting 𝑧 ∈ ℤ
𝑚

𝑝
as one matrix, we randomly

split up 𝑧 into many matrices. Specifically, we randomly partition [𝑚] into 𝑚
1−𝜏 sets, each of size 𝑚𝜏 . By

appropriate Chernoff bounds (and a union bound), one can show that with all but sub-exponentially small
probability, all sets will have at most 𝑚𝜏/5 non-zero entries of 𝑧 in them. Then, for each of these sets, we
can apply our “warm up” version since 𝜏/5 < 𝜏/2, and concatenate all the results together. A bit more
explicitly, if we split up 𝑧 into 𝑧

(𝑗)
∈ ℤ

𝑚
𝜏

𝑝
for 𝑗 ∈ [𝑚

1−𝜏
], we have

Compress(𝑧) =
(

{

(𝑈
(𝑗)
, 𝑉

(𝑗)

)

}

𝑗∈[𝑚
1−𝜏

])
,

Expand
(

{

(𝑈
(𝑗)
, 𝑉

(𝑗)

)

}

𝑗∈[𝑚
1−𝜏

])
= vec

(

{

𝑈
(𝑗)

⋅ 𝑉
(𝑗)
}

𝑗∈[𝑚
1−𝜏

])
,

where the grouping into random sets is implicit in the notation. For all 𝑗 ∈ [𝑚
1−𝜏

], 𝑈 (𝑗)
∈ ℤ

𝑚
𝜏/2

×𝑚
𝜏/5

𝑝
and

𝑉
(𝑗)

∈ ℤ
𝑚
𝜏/5

×𝑚
𝜏/2

𝑝
. As before, Item 1 is clear by construction. To see the output size, we have

|Compress(𝑧)| = 𝑚
1−𝜏

(

|
|
|
𝑈

(𝑗)|
|
|
+
|
|
|
𝑉

(𝑗)|
|
|)

= 2 ⋅ 𝑚
1−𝜏

⋅ 𝑚
𝜏/2

⋅ 𝑚
𝜏/5

= 2𝑚
1−3𝜏/10

≤ 𝑚
1−𝜏/5

,

for sufficiently large 𝑚. Lastly, to see Item 2, Expand() is once again just matrix multiplication of input
matrices, so it has degree 2.

3

2.3 Preliminaries on NC
0

The complexity class NC0 corresponds to problems solvable by 𝑂(1)-depth circuits using gates with fan-
in at most 2. Since a depth bound of 𝑑 implies a locality bound of 2𝑑 , 𝑂(1) depth and 𝑂(1) locality are
equivalent. Thus, we say a function (family) 𝐺𝑛 ∶ {0, 1}

𝑛
→ {0, 1}

𝑚 is in NC
0 if there exists a constant

𝓁 = 𝑂(1) such that every output bit of 𝐺𝑛 is a function of at most 𝓁 input bits.
One fact we will use about constant-locality Boolean functions is that they can be easily arithmetized

into constant-degree functions overℤ𝑝 for any 𝑝. To see this, suppose 𝑓 ∶ {0, 1}
𝑛
→ {0, 1} depends only on

𝑑 coordinates, say, without loss of generality, the first 𝑑 coordinates. That is, there is some 𝑔 ∶ {0, 1}
𝑑
→

{0, 1} such that
𝑓 (𝑥1,⋯ , 𝑥𝑛) = 𝑔(𝑥1,⋯ , 𝑥𝑑).

We can write this as a multilinear function, which, in particular, has total degree at most 𝑑:

𝑓 (𝑥1,⋯ , 𝑥𝑛) = 𝑔(𝑥1,⋯ , 𝑥𝑑) = ∑

𝑦∈{0,1}
𝑑

𝑔(𝑦)1[𝑥 = 𝑦] = ∑

𝑦∈{0,1}
𝑑

𝑔(𝑦)

(

∏

𝑖∶𝑦𝑖=1

𝑥𝑖

)(

∏

𝑖∶𝑦𝑖=0

(1 − 𝑥𝑖)

)

.

That is, there is a function ̂
𝑓 ∶ ℤ

𝑛

𝑝
→ ℤ𝑝 such that:

• ̂
𝑓 is a polynomial of degree 𝑑 over ℤ𝑛

𝑝
,

• ̂
𝑓 is 𝑑-local, in the sense that ̂

𝑓 depends only on 𝑑 input coordinates, and

• ̂
𝑓 (𝑥) = 𝑓 (𝑥) for all 𝑥 ∈ {0, 1}

𝑛
⊆ ℤ

𝑛

𝑝
.

For a function 𝑓 ∶ {0, 1}
𝑛
→ {0, 1} of locality 𝑑, we denote ̂

𝑓 ∶ ℤ
𝑛

𝑝
→ ℤ𝑝 to be itsmultilinear arithmetization

over ℤ𝑛

𝑝
of degree 𝑑. More generally, we extend this notation to 𝑓 ∶ {0, 1}

𝑛
→ {0, 1}

𝑚 of locality 𝑑, where
we denote ̂

𝑓 ∶ ℤ
𝑛

𝑝
→ ℤ

𝑚

𝑝
to be its multilinear arithmetization applied to each output coordinate.

2.4 Definition of LSFE

Definition 4 (Local Slow Functional Encryption). A local slow functional encryption scheme (LSFE) con-
sists of three algorithms:

• LSFE.Setup(1𝜆, 𝑓 ∶ {0, 1}
𝑛
→ {0, 1}

𝑚
): Outputs a master public key mpk and a functional secret key sk𝑓 ,

which is assumed to include a description of 𝑓 without loss of generality. We require that 𝑓 has locality
𝑑 = 𝑂(1).

• LSFE.Enc(mpk, 𝑥 ∈ {0, 1}
𝑛
): Outputs a ciphertext ct.

• LSFE.Dec(sk𝑓 , ct): Outputs a value in {0, 1}
𝑚.

We require a few properties of these algorithms.

Correctness: For any 𝑥 ∈ {0, 1}
𝑛 and any 𝑑-local function 𝑓 ∶ {0, 1}

𝑛
→ {0, 1}

𝑚, and (mpk, sk𝑓) ←

LSFE.Setup(1𝜆, 𝑓),

Pr [LSFE.Dec(sk𝑓 , LSFE.Enc(mpk, 𝑥)) = 𝑓 (𝑥)] = 1 − negl(𝜆).

4

Weak Succinctness: There exists some 𝜖 > 0 such that for all 𝑚 ≥ 𝑛
2, for ct ← LSFE.Enc(mpk, 𝑥), we have

|ct| ≤ 𝑚
1−𝜖

⋅ poly(𝜆).

Security: There is a constant 𝑐 > 0 and a p.p.t. simulator 𝑆 such that we have the following indistingiusha-
bility, with advantage at most 2−Ω(𝜆

𝑐
) to all p.p.t. adversaries: for all 𝑥 and all 𝑑-local 𝑓 ∶ {0, 1}

𝑛
→ {0, 1}

𝑚,

(mpk, sk𝑓 , LSFE.Enc(mpk, 𝑥)) ≈𝑐 𝑆(𝑓 , 𝑓 (𝑥)),

where (mpk, sk𝑓) ← LSFE.Setup(1𝜆, 𝑓).

Themain differences between this definition (LSFE) and the previous one (D2FE) is that here we allow
𝑂(1)-locality functions on (secret) inputs, while in D2FE, we allow degree-2 functions on secret inputs (SI)
and 𝑂(1)-degree functions on public inputs (PI).

2.5 Construction of LSFE

Now, we give a construction of LSFE, assuming a D2FE scheme and the hardness of (large field) LPN.

LSFE.Enc(mpk, 𝑥 ∈ {0, 1}
𝑛
):

• Let 𝓁 = 𝑚
1/𝑑 .

• Sample 𝐀 ← ℤ
𝑛×𝓁

𝑝
, 𝐬 ← ℤ

𝓁

𝑝
, 𝐞 ← Bern𝑝(𝓁

−𝛿
)
𝑛.

• Let PI = (𝐀, 𝐛 = 𝐀𝐬 + 𝐞 + 𝑥 (mod 𝑝)), where we interpret 𝑥 ∈ {0, 1}
𝑛
⊆ ℤ

𝑛

𝑝
.

• Parse 𝑓 from mpk. Let errs = Compress(̂𝑓 (𝑥 + 𝐞) −
̂
𝑓 (𝑥)).a

• Let SI = ((𝐬, 1)
⊗𝑑/2

, errs).

• Output ct ← D2FE.Enc(mpk, PI, SI).

LSFE.Setup(1𝜆, 𝑓 ∶ {0, 1}
𝑛
→ {0, 1}

𝑚
):

• Let 𝑔 = 𝑔(PI, SI) be a function defined as follows:

– Parse PI = (𝐀, 𝐛), SI = ((𝐬, 1)
⊗𝑑/2

, errs).

– Output ̂
𝑓 (𝐛 − 𝐀𝐬) − Expand(errs).

• (mpk, sk𝑔) ← D2FE.Setup(1𝜆, 𝑔).

• Output (mpk, sk𝑓 ∶= sk𝑔).

LSFE.Dec(sk𝑓 , ct):

• Output D2FE.Dec(sk𝑓 , ct).
aThere is a subtlety here that Compress and Expand are randomized and need the same shared random string. To simplify

notation, we omit this, but since this random string does not need to be hidden, we can put this randomness in mpk.

Figure 1: Construction of LSFE from D2FE and (large-field) LPN.

5

Security. Exercise.

Correctness. Let 𝑥 ∈ {0, 1}
𝑛 and let 𝑓 ∶ {0, 1}

𝑛
→ {0, 1}

𝑚 be a 𝑑-local function. Assuming ̂
𝑓 (𝑥 + 𝐞)−

̂
𝑓 (𝑥)

is sufficiently sparse, we know

𝑔(PI, SI) = ̂
𝑓 (𝐛 − 𝐀𝐬) − Expand(errs)

=
̂
𝑓 (𝑥 + 𝐞) − Expand(Compress(̂𝑓 (𝑥 + 𝐞) −

̂
𝑓 (𝑥))

=
̂
𝑓 (𝑥 + 𝐞) − (

̂
𝑓 (𝑥 + 𝐞) −

̂
𝑓 (𝑥))

=
̂
𝑓 (𝑥)

= 𝑓 (𝑥),

where the last equality holds since 𝑥 ∈ {0, 1}
𝑛. It remains to show that ̂

𝑓 (𝑥 + 𝐞) −
̂
𝑓 (𝑥) is sparse, and that

𝑔 is degree 𝑂(1) in PI and degree 2 in SI (so that we can apply correctness of D2FE).
To see that ̂

𝑓 (𝑥 + 𝐞) −
̂
𝑓 (𝑥) is sparse, for 𝑗 ∈ [𝑚], let ̂

𝑓𝑗 denote the 𝑗th output coordinate of ̂
𝑓 , and

for 𝑖 ∈ [𝑛], let 𝑒𝑖 ∈ ℤ𝑝 denote the 𝑖th coordinate of 𝐞. If ̂
𝑓𝑗 (𝑥 + 𝐞) −

̂
𝑓𝑗 (𝑥) ≠ 0, it must be the case that

one of the 𝑑 = 𝑂(1) input coordinates 𝑖 ∈ [𝑛] touched by ̂
𝑓𝑗 must have 𝑒𝑖 ≠ 0. For a fixed 𝑗 ∈ [𝑚],

by a union bound, the probability of this event is at most 𝑑 ⋅ 𝓁
−𝛿

= 𝑂(𝓁
−𝛿
). Therefore, by linearity of

expectation, ̂
𝑓 (𝑥 + 𝐞) −

̂
𝑓 (𝑥) has 𝑂(𝑚𝓁

−𝛿
) non-zero entries in expectation. Since 𝓁 = 𝑚

1/𝑑 , this becomes
𝑂(𝑚 ⋅ 𝑚

−𝛿/𝑑
) = 𝑂(𝑚

1−𝛿/𝑑
) coordinates, so we can set 𝜏 = 𝛿/(2𝑑) for our compression algorithm.2

Lastly, we see why 𝑔 is degree-𝑂(1) in PI and degree-2 in SI. Since ̂
𝑓 has degree 𝑂(1), it is clear that

̂
𝑓 (𝐛 − 𝐀𝐬) has degree 𝑂(1) in 𝐛, 𝐀, and 𝐬, which is degree 𝑂(1) in 𝐛 and 𝐀, and degree 2 in (𝐬, 1)

⊗𝑑/2.
Therefore, ̂

𝑓 (𝐛 − 𝐀𝐬) is degree-𝑂(1) in PI and degree-2 in SI. For the second term, Expand(errs) has de-
gree 2 as we saw earlier, so Expand(errs) is degree-2 in SI (and trivially degree 𝑂(1) in PI). Therefore,
𝑔(PI, SI) = ̂

𝑓 (𝐛 − 𝐀𝐬) − Expand(errs) is degree-𝑂(1) in PI and degree-2 in SI, as desired.

Weak Succinctness: We first bound |PI|. Note that PI can be written as an element of ℤ𝑛×(𝓁+1)

𝑝
. Therefore,

since 𝑚 ≥ 𝑛
2,

|PI| = 𝑛(𝓁 + 1) = 𝑂(𝑛𝑚
1/𝑑

) ≤ 𝑂(𝑛𝑚
1/3

) ≤ 𝑂(𝑚
5/6

),

since we can assume 𝑑 ≥ 3 without loss of generality. For SI, we have

|SI| =
|
|
|
(𝐬, 1)

⊗𝑑/2|
|
|
+ |Compress(errs)|

≤ (𝓁 + 1)
𝑑/2

+ 𝑚
1−𝜏/5

≤ 𝑂(𝓁
𝑑/2

) + 𝑚
1−𝛿/(10𝑑)

≤ 𝑂(

√

𝑚) + 𝑚
1−𝛿/(10𝑑)

≤ 𝑂(𝑚
1−𝛿/(10𝑑)

).

Finally, applying linear efficiency of D2FE, we see that for ct ← LSFE.Enc(mpk, 𝑥), we have

|ct| ≤ (|PI| + |SI|) ⋅ poly(𝜆) ≤ (𝑚
5/6

+ 𝑚
1−𝛿/(10𝑑)

) ⋅ poly(𝜆) ≤ 𝑚
1−𝛿/(10𝑑)

⋅ poly(𝜆),

as desired.
2Note: This is not a “with high probability” statement, as the outputs of ̂

𝑓 may be arbitrarily correlated. Getting around this
is an annoying technicality, which [JLS22] does by splitting up the computation and amortizing in the right way.

6

3 From LSFE to SFE

3.1 PRGs in NC
0

The key assumption in this transformation will be the existence of (polynomial-stretch) PRGs in NC
0,

defined as follows.

Assumption 5 (PRGs inNC0). There exists a constant 𝛾 > 0 and a uniformly efficiently generatable function
(family) 𝐺𝑚 ∶ {0, 1}

𝑚
1−𝛾

→ {0, 1}
𝑚 such that

• 𝐺𝑚 is in NC
0; and

• 𝐺𝑚 is a pseudorandom generator (PRG), in the sense that for all non-uniform p.p.t. distinguishers 𝐷,

|
|
|
|
|

Pr

𝑥←{0,1}
𝑚
1−𝛾

[𝐷(𝐺𝑚(𝑥)) = 1] − Pr

𝑦←{0,1}
𝑚

[𝐷(𝑦) = 1]

|
|
|
|
|

= negl(𝑚).

We say that the sub-exponential version of this assumption holds if the negligible function above is sub-
exponential in 𝑚.

This assumption, as stated, is simplified. The candidate constructions instantiating this assumption
sample a description of the family 𝐺𝑚, and only expect the (possibly sub-exponential) indistinguishability
to hold with probability 1−𝑜(1) probability over the sampling algorithm. For the ultimate IO construction,
one can do some work and use functional encryption combiners to get around this issue, boosting this
1 − 𝑜(1) probability to all but sub-exponential probability, which is sufficient. For simplicity, here, we
assume the function family 𝐺𝑚 is fixed and uniformly efficiently generatable.

Moreover, the polynomial stretch can be amplified to an arbitrary polynomial by composing 𝐺 with
itself many times. That is, we can use the following equivalent formulation of the assumption.

Assumption 6 (PRGs inNC0). For all 𝛾 > 0, there exists a uniformly efficiently generatable function (family)
𝐺𝑚 ∶ {0, 1}

𝑚
𝛾

→ {0, 1}
𝑚 such that

• 𝐺𝑚 is in NC
0 (where the locality can depend on 𝛾); and

• 𝐺𝑚 is a pseudorandom generator (PRG), in the sense that for all non-uniform p.p.t. distinguishers 𝐷,

|
|
|
|
|

Pr

𝑥←{0,1}
𝑚
𝛾

[𝐷(𝐺𝑚(𝑥)) = 1] − Pr

𝑦←{0,1}
𝑚

[𝐷(𝑦) = 1]

|
|
|
|
|

= negl(𝑚).

We say that the sub-exponential version of this assumption holds if the negligible function above is sub-
exponential in 𝑚.

We will use this form of the assumption, with 𝛾 = 1/3, i.e., so the PRG is length-cubing.

3.2 Randomized Encodings

Definition 7. A local randomized encoding (LRE) scheme consists of two algorithms:

• LRE.Encode(1𝜆, 𝐶 ∶ {0, 1}
�̃�
→ {0, 1}

∗
, 𝑥 ∈ {0, 1}

�̃�
; 𝑟): Outputs some randomized encoding 𝜋.

7

• LRE.Decode(𝜋): Outputs a value 𝑦 ∈ {0, 1}
∗.

We require a few properties of these algorithms.

Correctness: For all 𝑥 ∈ {0, 1}
�̃� and all circuits 𝐶 ∶ {0, 1}

�̃�
→ {0, 1}

∗,

Pr
𝑟
[LRE.Decode(LRE.Encode(1

𝜆
, 𝐶, 𝑥; 𝑟)) = 𝐶(𝑥)] = 1.

Security: There is a constant 𝑐 > 0 and a p.p.t. simulator 𝑆 such that we have the following indistin-
guishability, with advantage at most 2−Ω(𝜆

𝑐
) to all p.p.t. adversaries: for all 𝑥 ∈ {0, 1}

�̃� and all circuits
𝐶 ∶ {0, 1}

�̃�
→ {0, 1}

∗,
LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) ≈𝑐 𝑆(𝐶, 𝐶(𝑥)).

Locality: The function LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) is 𝑂(1)-local in 𝑥 and 𝑟 .

Efficiency: The output length of LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) and its randomness complexity (i.e., |𝑟 |) can both
be upper-bounded by |𝐶| ⋅ poly(𝜆).

Below, we will show the following fact.

Theorem 8. Assume the existence of (linear-stretch) PRGs in NC
0. Then, there exists a local randomized

encoding scheme.

3.2.1 Construction of LRE Using Garbled Circuits

In the previous class, we saw a construction of randomized encodings using Yao’s garbled circuits with
“double” encryption. Here, we will give a slightly different construction of garbled circuits, called “point-
and-permute”, using PRGs directly and a GGM-style construction instead of secret-key encryption. One
benefit of this construction is that it satisfies perfect correctness. For 𝐺 ∶ {0, 1}

𝜆
→ {0, 1}

2𝜆+2, let 𝐺0, 𝐺1 ∶

{0, 1}
𝜆
→ {0, 1}

𝜆+1 be defined as the prefix and suffix of 𝐺, i.e., 𝐺(𝜎) = (𝐺0(𝜎), 𝐺1(𝜎)).

Encoding. For a circuit 𝐶 ∶ {0, 1}
�̃�
→ {0, 1}

∗ and input 𝑥 ∈ {0, 1}
�̃�, we let LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) be the

following algorithm, where 𝑟 denotes a random string. For each wire 𝑤 in the circuit 𝐶, we will take two
seeds 𝜎0

𝑤
, 𝜎

1

𝑤
∈ {0, 1}

𝜆 and one permutation bit 𝑏𝑤 ∈ {0, 1} from the random string 𝑟 . For each NAND gate
𝑔 in the circuit, consisting of input wires 𝑖, 𝑗 and output wire 𝑘, the table 𝑇𝑔 for gate 𝑔 will be an ordered
list of these four values:

𝑇𝑔 ∶=

{

𝐺𝑧
(
𝜎
𝑦⊕𝑏𝑖

𝑖)
⊕ 𝐺𝑦

(
𝜎
𝑧⊕𝑏𝑗

𝑗)
⊕
(
𝜎
NAND(𝑦⊕𝑏𝑖,𝑧⊕𝑏𝑗)
𝑘

,NAND(𝑦 ⊕ 𝑏𝑖, 𝑧 ⊕ 𝑏𝑗) ⊕ 𝑏𝑘
)

}

𝑦,𝑧∈{0,1}

.

While this expression may look ominous, the point of this table is as follows.

• Let 𝑣𝑖, 𝑣𝑗 , 𝑣𝑘 be the true binary values of wires 𝑖, 𝑗 , 𝑘, respectively (for some implicit input 𝑥). This table
preserves the invariant that the (𝑣𝑖⊕𝑏𝑖, 𝑣𝑗 ⊕𝑏𝑗)th entry in the list “encrypts” the string (𝜎𝑣𝑘

𝑘
, 𝑣𝑘⊕𝑏𝑘)

under the “keys” 𝜎𝑣𝑖

𝑖
, 𝜎

𝑣𝑗

𝑗
. (It is worth double checking this yourself by hand.)

• The reason for splitting up 𝐺 into two parts is to ensure joint pseudorandomness of the three re-
maining entries in the table, when given 𝜎

𝑣𝑖

𝑖
and 𝜎

𝑣𝑗

𝑗
. Otherwise, mix-and-match attacks could be

possible.

The input wire labels for 𝑥 will be (𝜎
𝑥𝑖

inp
𝑖

, 𝑥𝑖 ⊕ 𝑏𝑖) for 𝑖 ∈ [�̃�], and the output table will consist of
{(𝑧, 𝜎

𝑧

outp
𝑗

)}
𝑧∈{0,1}

for all output indices 𝑗 . A proof of security is left as an exercise.

8

Decoding. We let LRE.Decode(𝜋) be as follows: starting from the input wires, use the last bits of the
previous labels (namely, 𝑣𝑖 ⊕ 𝑏𝑖 and 𝑣𝑗 ⊕ 𝑏𝑗) to index into the table. By plugging in keys 𝜎𝑣𝑖

𝑖
and 𝜎

𝑣𝑗

𝑗
into

the appropriate PRG, we recover a key 𝜎
𝑣𝑘

𝑘
and 𝑣𝑘 ⊕ 𝑏𝑘 . This proceeds until the output gates, from which

the values are directly read from the output table.

Locality. The following observation will be critical to us. If 𝐺 is in NC
0 (i.e., has 𝑂(1) locality), then

LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) also has 𝑂(1) locality in 𝑥 and 𝑟 . For the input wire labels and output table, each
output bit 𝜋𝑖 of the encoding 𝜋 = LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) is either a constant value, a bit of the random tape
𝑟 , or the ⊕ of a bit of 𝑥 and a bit of 𝑟 . For the tables 𝑇𝑔 , since 𝐺 is 𝑂(1)-local, computing 𝑇𝑔 is 𝑂(1)-local
in 𝑥 and 𝑟 , by construction of 𝑇𝑔 .

Efficiency. Lastly, we note that both the output length of LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) and the randomness
complexity (i.e., |𝑟 |) can be upper-bounded by |𝐶| ⋅ poly(𝜆).

3.3 Definition of SFE

Definition 9 (Slow Functional Encryption). A slow functional encryption scheme (SFE) consists of three
algorithms:

• SFE.Setup(1𝜆, 𝐶 ∶ {0, 1}
�̃�
→ {0, 1}

∗
): Outputs a master public key mpk and a functional secret key sk𝐶 .

• SFE.Enc(mpk, 𝑥 ∈ {0, 1}
�̃�
): Outputs a ciphertext ct.

• SFE.Dec(sk𝐶 , ct): Outputs a value in {0, 1}
∗.

We require a few properties of these algorithms.

Correctness: For any 𝑥 ∈ {0, 1}
�̃� and any circuit 𝐶 ∶ {0, 1}

�̃�
→ {0, 1}

∗, and (mpk, sk𝐶) ← SFE.Setup(1𝜆, 𝐶),

Pr [SFE.Dec(sk𝐶 , SFE.Enc(mpk, 𝑥)) = 𝐶(𝑥)] = 1 − negl(𝜆).

Weak Succinctness: There exists some 𝜖 > 0 such that for ct ← SFE.Enc(mpk, 𝑥), we have |ct| ≤ |𝐶|
1−𝜖

⋅

poly(�̃�, 𝜆).

Security: There is a constant 𝑐 > 0 and a p.p.t. simulator 𝑆 such that we have the following indistingiusha-
bility, with advantage at most 2−Ω(𝜆

𝑐
) to all p.p.t. adversaries: for all 𝑥 ∈ {0, 1}

�̃�, and all circuits 𝐶 ∶ {0, 1}
�̃�
→

{0, 1}
∗,

(mpk, sk𝐶 , SFE.Enc(mpk, 𝑥)) ≈𝑐 𝑆(𝐶, 𝐶(𝑥)),

where (mpk, sk𝐶) ← SFE.Setup(1𝜆, 𝐶).

9

3.4 Construction of SFE

Parameters:

• Let 𝑚 denote the maximum of the following quantities: the output length of LRE.Encode, the
randomness complexity of LRE.Encode, and �̃�

3 (where �̃� is the input message length of our con-
struction). From above, we know 𝑚 ≤ |𝐶| ⋅ poly(𝜆, �̃�). Moreover, without loss of generality, we
can pad the output length and randomness length to be exactly 𝑚, in case �̃�3 is larger a priori.

SFE.Enc(mpk, 𝑥 ∈ {0, 1}
�̃�
):

• Sample 𝜎 ← {0, 1}
𝑚
1/3 .

• Output ct ← LSFE.Enc(mpk, (𝑥, 𝜎)), where the 𝑛 in LSFE is defined by 𝑛 = �̃� + 𝑚
1/3.

SFE.Setup(1𝜆, 𝐶 ∶ {0, 1}
�̃�
→ {0, 1}

∗
):

• Define the function ℎ(𝑥, 𝜎) = LRE.Encode(1𝜆, 𝐶, 𝑥;𝐺(𝜎)), where 𝐺 ∶ {0, 1}
𝑚
1/3

→ {0, 1}
𝑚 is a PRG

in NC
0.

• (mpk, skℎ) ← LSFE.Setup(1𝜆, ℎ).

• Output (mpk, sk𝐶 ∶= skℎ).

SFE.Dec(sk𝐶 , ct):

• Recover 𝜋 ← LSFE.Dec(skℎ, ct)

• Output LRE𝐺.Decode(𝜋).

Figure 2: Construction of SFE from LSFE and (polynomial-stretch) PRGs in NC
0.

Correctness. Assuming that ℎ is indeed𝑂(1)-local, this follows from correctness of LSFE and LRE. That
is, LSFE.Dec returns 𝜋 = LRE.Encode(1𝜆, 𝐶, 𝑥;𝐺(𝜎)), and LRE.Decode(𝜋) = 𝐶(𝑥), as desired. To see that
ℎ is 𝑂(1)-local, recall that LRE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) is 𝑂(1)-local in 𝑥 and 𝑟 , and 𝐺 is 𝑂(1)-local, so their
composition is still 𝑂(1)-local.

Weak Succinctness. Recall that 𝑛 = |(𝑥, 𝜎)| = �̃� + 𝑚
1/3. To apply weak succinctness of LSFE, we need

the output length of ℎ, namely 𝑚, to be at least 𝑛2. To see this, we have

𝑛
2
= (�̃� + 𝑚

1/3
)
2
≤ 𝑂(�̃�

2
+ 𝑚

2/3
) ≤ 𝑂(𝑚

2/3
) ≤ 𝑜(𝑚),

where the penultimate bound holds since 𝑚 ≥ �̃�
3. By weak succinctness of LSFE, we know |ct| ≤ 𝑚

1−𝜖
⋅

poly(𝜆). Expanding this out, we have

|ct| ≤ 𝑚
1−𝜖

⋅ poly(𝜆) ≤ (|𝐶| ⋅ poly(�̃�, 𝜆))
1−𝜖

⋅ poly(𝜆) ≤ |𝐶|
1−𝜖

⋅ poly(�̃�, 𝜆),

as desired.

Security. This follows by combining LRE security, the PRG security of 𝐺, and LSFE security.

10

References

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium onTheory of Computing,
pages 60–73, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from lpn over f p,
dlin, and prgs in nc 0. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, pages 670–699. Springer, 2022.

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In Theory of
Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020,
Proceedings, Part I 18, pages 210–228. Springer, 2020.

11

	Starting Point: Degree-2 Functional Encryption
	Definition of D2FE

	From D2FE to LSFE
	Learning Parity with Noise (LPN)
	Algebraic Compression
	Preliminaries on NC0
	Definition of LSFE
	Construction of LSFE

	From LSFE to SFE
	PRGs in NC0
	Randomized Encodings
	Construction of LRE Using Garbled Circuits

	Definition of SFE
	Construction of SFE

