
Degree-2 FE (and More) from Bilinear Maps

1 Bilinear Maps

We start with the notion of groups with bilinear maps. Let 𝔾1, 𝔾2 and 𝔾𝑇 be cyclic groups of prime order
𝑝 endowed with a map 𝑒 ∶ 𝔾1 × 𝔾2 → 𝔾𝑇 which obeys the following properties:

• Non-degeneracy: If 𝑔1 ∈ 𝔾1 and 𝑔2 ∈ 𝔾2 are non-identity elements, 𝑒(𝑔1, 𝑔2) is a non-identity element
in 𝔾𝑇 .

• Efficient computability: There is a polynomial-time algorithm to compute 𝑒 given 𝑔1 and 𝑔2.

• Bilinearity: For all 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2, 𝑥1, 𝑥2 ∈ ℤ𝑝 ,

𝑒(𝑔𝑥11 , 𝑔𝑥22 ) = 𝑒(𝑔1, 𝑔2)𝑥1𝑥2

This lets you compute degree-2 polynomials “in the exponent”, the source of the power of bilinear
maps.

Such groups with a bilinear map can be constructed from elliptic curves. In this case, typically 𝔾1 and
𝔾2 are groups of points on an elliptic curve and 𝔾𝑇 is a multiplicative subgroup of 𝔽∗𝑞 for some 𝑞. We
will not get into the details of how to construct bilinear maps here, but will refer the reader to Boneh and
Franklin’s 2003 paper for more details [BF03].

Computational Assumptions. We can assume that the decisional Diffie-Hellman (DDH) problem
is hard in either 𝔾1, 𝔾2 or 𝔾𝑇 . That is,

(𝑔, 𝑔𝑥 , ℎ, ℎ𝑥) ≈𝑐 (𝑔, 𝑔𝑥 , ℎ, ℎ𝑦) (1)

for uniformly random 𝑥, 𝑦 ← ℤ𝑝 and a uniformly random elements 𝑔, ℎ ← 𝔾1 (or 𝔾2 or 𝔾𝑇 , respectively).
Equivalently,

(𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑥𝑦) ≈𝑐 (𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧)

for uniformly random 𝑥, 𝑦, 𝑧 ← ℤ𝑝 and a uniformly random element 𝑔 ← 𝔾1 (or 𝔾2 or 𝔾𝑇 , respectively).

However, one has to be careful: if 𝑔 ← 𝔾1 and ℎ ← 𝔾2 in assumption 1, it is false. Indeed, given (𝑔, 𝑔′, ℎ, ℎ′),
one can compute the bilinear map on two pairs of elements and check for equality:

𝑒(𝑔, ℎ′) ?= 𝑒(𝑔′, ℎ)

which will be true for the distribution on the left hand side in 1, but not for the one on the right hand side.

To remedy this, we look to a generalization of the DDH assumption. To do this, we introduce a piece of
notation: for a matrix 𝐀 with entries 𝑎𝑖,𝑗 , the notation 𝑔𝐀 means a matrix consisting of 𝑔𝑎𝑖,𝑗 for all 𝑖, 𝑗 . It
is not hard to see that the DDH assumption is equivalent to saying that for a random vector 𝐀,𝐔 ← ℤ1×𝑚

𝑝
and 𝑠 ← ℤ𝑝 ,

(𝑔𝐀, 𝑔𝑠𝐀) ≈𝑐 (𝑔𝐀, 𝑔𝐔)

for a polynomially large 𝑚. The 𝑘-linear assumption (𝑘-LIN) is a generalization where 𝐀,𝐔 ← ℤ𝑘×𝑚
𝑝

and 𝐬 ← ℤ1×𝑘
𝑝 . That is,

(𝑔𝐀, 𝑔𝐬𝐀) ≈𝑐 (𝑔𝐀, 𝑔𝐔)

1



The attack described above does not apply to the 𝑘-linear assumption for 𝑘 > 1. Roughly speaking, the
distinguisher above for DDH computed the determinant of a 2 × 2 submatrix of [𝐚 � 𝑠𝐚] where � denotes
vertical concatenation of matrices. The analog for 2-LIN would require computing the determinant of 3×3
matrices which is beyond the capability of bilinear maps.

Another assumption one couldmake, along the same lines, for symmetric bilinear maps where𝔾1 = 𝔾2
is the perhaps confusingly named decisional bilinear Diffie-Hellman (DBDH) assumption which states
that

(𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 , 𝑒(𝑔, 𝑔)𝑥𝑦𝑧) ≈𝑐 (𝑔, 𝑔𝑥 , 𝑔𝑦 , 𝑔𝑧 , 𝑒(𝑔, 𝑔)𝑢)

where 𝑔 ∈ 𝔾1 and 𝑥, 𝑦, 𝑧, 𝑢 ← ℤ𝑝 are uniformly random.

Notation. To simplify presentation, we will resort to shorthand notation when describing group ele-
ments. We will let [𝑎]1 for 𝑎 ∈ ℤ𝑝 denote 𝑔𝑎1 for some fixed 𝑔1 ∈ 𝔾1 which will be clear from the context.
Similarly, [𝑎]2 for 𝑔𝑎2 with 𝑔2 ∈ 𝔾2, and [𝑎]𝑇 for 𝑔𝑎𝑇 for some 𝑔𝑇 ∈ 𝔾𝑇 . For example, we will write statement
such as

𝑒([𝑎]1, [𝑏]2) = 𝑒([1]1, [𝑎𝑏]2)

All vectors in this lecture are row vectors unless otherwise specified.

2 Degree-1 FE: A Warmup

We will start by constructing a functional encryption scheme for linear functions

𝐹𝛼1,…,𝛼𝓁(𝑥1, … , 𝑥𝓁) =
𝓁
∑
𝑖=1

𝛼𝑖𝑥𝑖 = 𝜶𝐱𝑇

We use an Abelian group 𝔾 of order 𝑝, a prime. Here, we will not need bilinear maps, rather a group 𝔾
where the DDH assumption holds.

• msk: 𝐬 ← ℤ𝓁
𝑝 and mpk: 𝑔𝐬.

• Enc(mpk, 𝐱): pick a random 𝑟 ← ℤ𝑝 and output

ct ∶= (𝑔𝑟 , 𝑔𝑟𝐬+𝐱)

(Note that one can compute 𝑔𝑟𝑠𝑖+𝑥𝑖 using the public key 𝑔𝑠𝑖 alone; no need to know 𝑠𝑖.)

• Keygen(msk, 𝜶): outputs
sk𝜶 = 𝜶𝐬𝑇 ∈ ℤ𝑝

• Dec: Compute
𝑔𝜶(𝑟𝐬+𝐱)𝑇 ⋅ 𝑔−𝑟𝜶𝐬𝑇 = 𝑔𝜶𝐱𝑇

where the first multiplicand is computed using the second component of the ciphertext and 𝜶 , and
the second multiplicand using the first component of the ciphertext and the functional secret key.

We will show security in just a moment, but a few things are worth noting.

2



1. We only get the output in the exponent. This is a shortcoming that will stay with us throughout
this lecture (and indeed, something that we don’t know how to overcome at all). Fortunately, at the
end, in our application to XIO (cf. Neekon’s lecture), we will compute functions whose outputs are
binary, so given the output in the exponent, we can figure it out in the clear by brute force search.

2. There is no compression here. That is, by virtue of the function being linear, its description size
(namely 𝓁 elements ofℤ𝑝) is the same as the input length. Now, you could try using this to construct
a degree-2 FE in the following manner. Write a quadratic function 𝑄(𝑥1, … , 𝑥𝓁) = ∑𝑖,𝑗 𝛼𝑖,𝑗𝑥𝑖𝑥𝑗 as a
linear function

𝐹𝜶(𝐱) = ⟨𝜶, 𝐱 ⊗ 𝐱⟩

That is, a linear function of 𝐱 tensored with itself. However, now, the ciphertext size will be 𝑂(𝓁2)
making it non-compact. In our application to XIO via the JLS result, we will need the encryption to
be compact, i.e. with size 𝑂(𝓁). To achieve this, we will need to turn to groups that admit bilinear
maps.

2.1 Simulation Security

We will show how to simulate mpk, sk𝑓 and ct𝑥 given only 𝑓 and 𝑓 (𝑥). (The generalization to multiple
functional secret keys follows analogously.) Roughly speaking, this shows that mpk, sk𝑓 and ct𝑥 together
reveal no more information than 𝑓 (𝑥).

Let 𝑓 (𝑥) = ∑𝓁
𝑖=1 𝛼𝑖𝑥𝑖 mod 𝑝.

• Simulate the functional secret key sk𝑓 for a linear function as a random number 𝑠𝑓 ← ℤ𝑝 . Note that
this is the correct distribution: the marginal distribution of sk𝑓 is indeed uniformly random.

• Assume that 𝛼1 ≠ 0. For fixed values of 𝑠2, … , 𝑠𝓁, note that

𝑠1 = (𝑠𝑓 −∑
𝑖>1

𝛼𝑖𝑠𝑖)/𝛼1

• Simulate mpk as (𝑔𝑠1 , … , 𝑔𝑠𝓁)where 𝑠1 is computed as above. Note that this can be done using 𝑠𝑓 and
𝑔𝑠2 , … , 𝑔𝑠𝓁 .

• To simulate the ciphertext, note that

𝑔𝑟𝑠1+𝑥1 = 𝑔𝑟𝑠𝑓 𝛼
−1
1 ⋅∏

𝑖>1
𝑔−𝑟𝑠𝑖𝛼𝑖𝛼

−1
1 ⋅ 𝑔𝑥1

= 𝑔𝑟𝑠𝑓 𝛼
−1
1 ⋅∏

𝑖>1
𝑔−(𝑟𝑠𝑖+𝑥𝑖)𝛼𝑖𝛼

−1
1 ⋅∏

𝑖>1
𝑔𝑥𝑖𝛼𝑖𝛼

−1
1 ⋅ 𝑔𝑥1

= 𝑔𝑟𝑠𝑓 𝛼
−1
1 ⋅ 𝑔(∑𝛼𝑖𝑥𝑖)⋅𝛼−1

1 ⋅∏
𝑖>1

𝑔−(𝑟𝑠𝑖+𝑥𝑖)𝛼𝑖𝛼
−1
1

This can be generated using 𝑔𝑟 , 𝑔𝑟𝑠𝑖+𝑥𝑖 and∑𝛼𝑖𝑥𝑖 alone (together with other public information the
simulator knows, such as the 𝛼𝑖 and 𝑠𝑓 ). In fact, ∑𝛼𝑖𝑥𝑖 is unnecessary; it suffices to have 𝑔∑𝛼𝑖𝑥𝑖 , an
observation that will come in handy later.
However, 𝑔𝑟 , 𝑔𝑟𝑠2+𝑥2 , … , 𝑔𝑟𝑠𝓁+𝑥𝓁 are pseudorandom by the Diffie-Hellman assumption. Thus, the sim-
ulator can do its job and generate a computationally indistinguishable simulation given only 𝛼𝑖 and
∑𝛼𝑖𝑥𝑖 (and in particular, no other information about the 𝑥𝑖).

3



2.2 An Extension

Before proceeding further, let us mention an extension of this scheme where the input 𝐱 and the function
𝜶 are given in the exponent. That is, Keygen is given [𝜶]2 and Enc is given [𝐱]1. (We also switch to the
compact notation.)

• msk: 𝐬 ← ℤ𝓁
𝑝 and mpk: [𝐬]1.

• Enc(mpk, 𝐱): pick a random 𝑟 ← ℤ𝑝 and output

ct ∶= [𝑟]1, [𝑟𝐬 + 𝐱]1

Note that encryption requires only [𝐱]1, not 𝐱 “in the clear”.

• Keygen(msk, 𝜶): outputs
sk𝜶 = [𝜶𝑇 𝐬]2

Note that key generation requires only [𝜶]2, not 𝜶 “in the clear”.

• Dec: Compute, with the aid of the bilinear map,

[𝜶𝑇 (𝑟𝐬 + 𝐱) − 𝑟𝜶𝑇 𝐬]𝑇 = [𝜶𝑇𝐱]𝑇

Note that decryption also requires only [𝜶]2, not𝜶 “in the clear”, and, as before, the result is obtained
in the exponent of 𝔾𝑇 .

We will leave the proof of security as an exercise but note that as above, simulation should only require
[𝜶𝑇𝐱]1 and not 𝜶𝑇𝐱 in the clear.

2.3 FEThroughThe Lens of PSM Protocols

Many (but not all) modern FE constructions are best viewed from the lens of a simple, information-
theoretic, game called a private simulataneous messages (or PSM) game. In such a game, Alice has a
function 𝑓 , Bob has an input 𝑥 , and they share a private random string that we will suggestively call msk.
The goal is for both of them to send a single message to Charlie at the end of which we want:

• Correctness: Charlie should be able to compute 𝑓 (𝑥) given Alice and Bob’s messages.

• Security: Alice and Bob’s messages should reveal nothing other than 𝑓 (𝑥). This is formalized via a
simulator in the usual cryptographic way.

PSM for Linear Functions. Imagine a simple setting where Alice holds a vector 𝜶 that defines a linear
function, Bob holds an input 𝐱 and the function

𝐹(𝜶, 𝐱) = (𝜶, ⟨𝜶, 𝐱⟩ mod 𝑞)

A protocol to do this would have the shared random string be 𝐬 ∈ ℤ𝑛
𝑝 , Bob sends 𝐬 + 𝐱 mod 𝑝 and Alice

sends 𝜶 and ⟨𝜶, 𝐬⟩ mod 𝑝. Charlie computes

⟨𝜶, 𝐬 + 𝐱⟩ − ⟨𝜶, 𝐬⟩ mod 𝑝 = ⟨𝜶, 𝐱⟩ mod 𝑝

4



Figure 1: A Private Simultaneous Messages (PSM) Protocol.

as desired. In the language of FE, this gives us a one-ciphertext, one-key, secret-key FE scheme for linear
functions.

It is clear that security is compromised if Bob uses the same msk to “encrypt” two different 𝐱. This is
where groups and the Diffie-Hellman assumption come in and give us the scheme that we just presented.
On the other hand, one can show that security is not compromised if Alice uses the same msk for many
different linear functions. However, that is a fortuitous coincidence.

In general, the process of designing an FE scheme can be thought of as first designing a PSM protocol
for the corresponding functionality, and then “lifting it” using cryptographic assumptions to many-key,
many-ciphertext security, and possibly also to the public-key setting.

PSM for Inner Products. Imagine now that you want to do the same thing, but Alice wants to keep 𝜶
private as well. Here is how one does this.

• msk is 𝐫, 𝐬.

• Alice sends 𝜶 + 𝐫 and Bob sends 𝐱 + 𝐬.

• Charlie can now compute
⟨𝜶 + 𝐫, 𝐱 + 𝐬⟩ = ⟨𝜶, 𝐱⟩ + cross-terms

where either Bob or Alice can compute each element of the cross-terms.

• In addition to the above, Alice sends Charlie ⟨𝜶, 𝐬⟩ + 𝑟 ′ where msk contains a scalar 𝑟 ′ in addition to
the above.

• In addition to the above, Bob sends Charlie ⟨𝐫, 𝐱 + 𝐬⟩ − 𝑟 ′.

I will leave checking correctness and proving security of this protocol as an exercise.

5



3 Degree-2 FE from Bilinear Maps

Let’s start with a PSM protocol for the function

𝐹(𝜶, (𝐱, 𝐲)) = (𝜶, (𝐱 ⊗ 𝐲) ⋅ 𝜶𝑇 mod 𝑝) (2)

where 𝐱, 𝐲 ∈ ℤ𝓁
𝑝 and 𝜶 ∈ ℤ𝓁2

𝑝 . (Note that we treat vectors as row vectors so 𝐱 ⊗ 𝐲 is a row vector, and the
column vector 𝜶𝑇 denotes the transpose of 𝜶 .)

We’d like the communication from Bob to be of size 𝑂(𝓁). As noted before, achieving communication
𝑂(𝓁2) is trivial by appealing to the protocol for linear functions, but we want to (and need to) do better.

So, let’s build up a PSM protocol for 𝐹 from first principles.
• The msk is a pair of strings 𝐫, 𝐬 ← ℤ𝓁

𝑝 .

• Bob needs to hide 𝐱 and 𝐲 so he “one-time pads” them and sends 𝐱 + 𝐫 mod 𝑝 and 𝐲 + 𝐬 mod 𝑝 to
Charlie.

• Alice sends 𝜶 to Charlie.

• What can Charlie do with this information? He can compute

((𝐱 + 𝐫) ⊗ (𝐲 + 𝐬)) ⋅ 𝜶𝑇 = (𝐱 ⊗ 𝐲) ⋅ 𝜶𝑇 + cross-terms (3)

so if he can remove the cross-terms somehow, he is all set.
Let’s write down

((𝐱 + 𝐫) ⊗ (𝐲 + 𝐬)
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

∶=𝐳

) ⋅ 𝜶𝑇 = (𝐱 ⊗ 𝐲) ⋅ 𝜶𝑇 + (𝐱 ⊗ 𝐬) ⋅ 𝜶𝑇 + (𝐫 ⊗ 𝐳) ⋅ 𝜶𝑇
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cross-terms

(4)

There are two ways to handle the cross-terms.
1. The first way is to observe that the cross terms are a linear function of 𝐱 and 𝐳. Bob knows 𝐱 and

𝐳, and Alice knows the description of the secret linear function (secret because it depends on 𝐫, 𝐬
in addition to 𝜶 .) Now, invoke the PSM protocol for computing inner products from our previous
discussion. This will give us a PSM protocol for degree-2 functions with 𝑂(𝓁) communication. This
can in turn be converted into an FE scheme by ”putting the elements in the exponent” appropriately.
But we will take a different route.

2. The second way, which will lead us to our FE scheme, is to write down the cross-terms differently, as
a public linear function of 𝐱, 𝐳, 𝐬, 𝐫. Now, the obvious way of doing this will result in a linear function
in 𝓁2 dimensions and therefore a protocol with communication 𝑂(𝓁2). But we will do better using
cryptography.
Imagine for a moment that 𝐫 = 𝑟𝐚1 and 𝐬 = 𝑠𝐚2 are scalar multiples of public vectors 𝐚1, 𝐚2. Then,

cross-terms = (𝐱⊗𝐬)⋅𝜶𝑇+(𝐫⊗𝐳)⋅𝜶𝑇 = (𝐱⊗𝑠𝐚2)⋅𝜶𝑇+(𝑟𝐚1⊗𝐳)⋅𝜶𝑇 = [𝐱⊗𝑠 ‖ 𝑟⊗𝐳]⋅[
𝐈 ⊗ 𝐚2
𝐚1 ⊗ 𝐈 ] ⋅ 𝜶

𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
linear fn

(5)

which is a public linear function in (𝑠𝐱, 𝑟𝐳). This can be computed using our first PSM protocol, the
one for linear functions.
The problem, however, is that 𝐬 and 𝐫 are now not random and therefore leak information. We
will solve this by “putting them in the exponent” and invoking an appropriate version of the Diffie-
Hellman assumption (in particular, 𝑘-LIN for 𝑘 > 1).

6



3.1 The FE Scheme

A First Try. Our first attempt will have essentially all the ideas except it will be insecure because of the
failure of the decisional Diffie-Hellman assumption. We will nevertheless be able to fix it under the 𝑘-LIN
assumption for 𝑘 > 1. (Recall that 1-LIN is DDH.)

• mpk is [𝐚1]1, [𝐚1]2, [𝐚2]2, [𝐰]1, and msk = (𝐚1, 𝐚2, 𝐰).

• Enc(mpk, (𝐱, 𝐲)) picks random 𝑟, 𝑠 ← ℤ𝑝 and computes [𝐱+𝑟𝐚1]1 and [𝐲+𝑠𝐚2]2. It also picks 𝑠′ ← ℤ𝑝
and computes [𝑠′]1 and [𝑠′𝐰 + (𝑠𝐱‖𝑟𝐳)]1 and outputs all of them as the ciphertext. That is,

ct = ([𝐱 + 𝑟𝐚1]1, [𝐲 + 𝑠𝐚2]2, [𝑠′]1, [𝑠′𝐰 + (𝑠𝐱‖𝑟𝐳)]1)

• Keygen(msk, 𝜶) outputs
sk𝜶 ∶= [𝐰𝜷𝑇 ]2

where
𝜷𝑇 = [

𝐈 ⊗ 𝐚2
𝐚1 ⊗ 𝐈 ] ⋅ 𝜶

𝑇

Note that this can be computed given [𝐚1]2, [𝐚2]2, 𝐰 and 𝜶 .

• Decryption uses the last two components of the ciphertext to compute

[(𝑠′𝐰 + (𝑠𝐱‖𝑟𝐳)) ⋅ 𝜷𝑇 − 𝑠′(𝐰𝜷𝑇 )]𝑇 = [(𝑠𝐱‖𝑟𝐳) ⋅ 𝜷𝑇 ]𝑇

using the fact that mpk allows Dec to compute [𝜷𝑇 ]2. One can now recover the output by computing

[((𝐱 + 𝑟𝐚1) ⊗ (𝐲 + 𝑠𝐚2)) ⋅ 𝜶𝑇 ]𝑇 = [(𝐱 ⊗ 𝐲) ⋅ 𝜶𝑇 + (𝑠𝐱‖𝑟𝐳) ⋅ 𝜷𝑇 ]𝑇

and dividing by [(𝑠𝐱‖𝑟𝐳) ⋅ 𝜷𝑇 ]𝑇 .

All seems well except that given [𝐚1]2, DDH does not hold in 𝔾1 w.r.t. 𝐚1, i.e. [𝑟𝐚1]1 does not look random
any more. Indeed, letting the first coordinates of 𝐚1 be (𝑎11, 𝑎12), we can check the equation

𝑒([𝑟𝑎11]1, [𝑎12]2)
?= 𝑒([𝑎11]1, [𝑟𝑎12]2)

which is a distinguisher. Since [𝑟𝐚1]1 is not pseudorandom any more, we cannot use it as a one-time pad
to hide 𝐱.

It seems necessary to publish [𝐚1]2 in the mpk for the decryption algorithm to do its job. So, we seem
to be stuck.

TheActual Scheme. Since DDH failed, let’s lean in on 𝑘-LIN for 𝑘 > 1. Recall that the DDH assumption
says [𝐚]1, [𝑠𝐚1]1 is pseudorandom where 𝐚 ∈ ℤ1×𝑚

𝑝 for a polynomially large 𝑚. We just saw that this is not
true once one gets their hands on [𝐚]2 as well.
The (bilateral) 𝑘-LIN assumption says that

([𝐀]𝑖, [𝐬𝐀]𝑖)𝑖∈{1,2,𝑇 } ≈𝑐 ([𝐀]𝑖, [𝐮]𝑖)𝑖∈{1,2,𝑇 }

where 𝐀 ← ℤ𝑘×𝑚
𝑝 . Now, one can check that the attack we had before does not go through any more. This

assumption is believed to hold and is a special case of an “uber-assumption” on bilinear maps [BBG05,
Appendix A].

With this, one can write down the final scheme.

7



• mpk is [𝐀1]1, [𝐀1]2, [𝐚2]2, [𝐰]1, and msk = (𝐀1, 𝐚2, 𝐰), where 𝐀1 ← ℤ2×𝓁
𝑝 .

• Enc(mpk, (𝐱, 𝐲)) picks random 𝑟 ← ℤ2
𝑝 , 𝑠 ← ℤ𝑝 and computes [𝐱 + 𝐫𝐀1]1 and [𝐲 + 𝑠𝐚2]2. It also picks

𝑠′ ← ℤ𝑝 and computes [𝑠′]1 and [𝑠′𝐰+ (𝑠𝐱 ‖ 𝐫 ⊗ 𝐳)]1 and outputs all of them as the ciphertext. That
is,

ct = ([𝐱 + 𝐫𝐀1]1, [𝐲 + 𝑠𝐚2]2, [𝑠′]1, [𝑠′𝐰 + (𝑠𝐱 ‖ 𝐫 ⊗ 𝐳)]1)

• Keygen(msk, 𝜶) outputs
sk𝜶 ∶= [𝐰𝜷𝑇 ]2

where
𝜷𝑇 = [

𝐈 ⊗ 𝐚2
𝐀1 ⊗ 𝐈 ] ⋅ 𝜶

𝑇

Note that this can be computed given [𝐀1]2, [𝐚2]2, 𝐰 and 𝜶 .

• Decryption is exactly as before. It uses the last two components of the ciphertext to compute

[(𝑠′𝐰 + (𝑠𝐱‖𝐫 ⊗ 𝐳)) ⋅ 𝜷𝑇 − 𝑠′(𝐰𝜷𝑇 )]𝑇 = [(𝑠𝐱‖𝐫 ⊗ 𝐳) ⋅ 𝜷𝑇 ]𝑇

using the fact that mpk allows Dec to compute [𝜷𝑇 ]2. One can now recover the output by computing

[((𝐱 + 𝐫𝐀1) ⊗ (𝐲 + 𝑠𝐚2)) ⋅ 𝜶𝑇 ]𝑇 = [(𝐱 ⊗ 𝐲) ⋅ 𝜶𝑇 + (𝑠𝐱‖𝐫 ⊗ 𝐳) ⋅ 𝜷𝑇 ]𝑇

and dividing by [(𝑠𝐱‖𝐫 ⊗ 𝐳) ⋅ 𝜷𝑇 ]𝑇 .

3.2 From Degree-(1, 𝑂(1)) FE to Degree-(2, 𝑂(1)) FE

We now need to compute

𝐹(𝑝, (𝜶, 𝐱, 𝐲)) = (𝑝, 𝜶, (𝐱 ⊗ 𝐲) ⋅ 𝑝(𝜶)𝑇 mod 𝑝) (6)

where 𝑝(𝜶) denotes a vector each of whose coefficients is a degree-𝑂(1) polynomial computed on𝜶 . What
we’ve been doing so far is the case of 𝑝 being the constant function which ignores𝜶 and outputs a constant
coefficient vector. Note that neither 𝑝 nor 𝜶 needs to be hidden.

One could go through the calculations as above and figure out that the cross terms are

cross-terms = [𝐱 ⊗ 𝑠 � 𝑟 ⊗ 𝐳] ⋅ [
𝐈 ⊗ 𝐚
𝐚 ⊗ 𝐈 ] ⋅ 𝑝(𝜶)𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
linear fn

(7)

which, as a function of 𝐱, 𝐲 and 𝜶 , is degree-1 in 𝐱 and 𝐳 and degree-𝑂(1) in 𝜶 . Thus, given a degree-
(1, 𝑂(1))-FE scheme, we can immediately build a degree-(2, 𝑂(1))-FE scheme.

We will not be able to get to the construction of a degree-(1, 𝑂(1))-FE scheme in the lecture but (a) we
will present a degree-(0, 𝑂(1))-FE scheme, aka an ABE scheme for constant-degree polynomials. In fact,
we will do one better and tell you about an ABE scheme for NC1) functions, generalizing constant-degree
polynomials; and (b) we will refer you to Wee’s paper [Wee20] for the actual construction of degree-
(1, 𝑂(1))-FE.

8



Figure 2: A Boolean formula on variables 𝑥1, 𝑥2, 𝑥3.

4 ABE for NC1 Functions

4.1 A Tool: Linear Secret Sharing (LSSS)

Fix a function 𝑓 ∶ {0, 1}𝓁 → {0, 1}. Say you have a secret number 𝑠 and you’d like to share it among 𝓁 parties
such that if a subset 𝑆 ⊆ [𝓁], also denoted by its characteristic vector 𝐱𝑆 ∈ {0, 1}𝓁, come together, they can
learn 𝑠 if 𝑓 (𝐱𝑆) = 1; and they cannot otherwise. For this to make sense, we will need 𝑓 to be monotone:
i.e. flipping a 0 to a 1 in the input cannot flip the output from 1 to 0.

We will show a scheme to do this where the size of the shares is polynomial in the size of the monotone
Boolean formula (i.e. a formula with AND and OR gates) computing 𝑓 . We will use the formula in Figure 2
as a running example.

To secret share 𝑠 w.r.t 𝑓 , do the following, starting from the output wire:

• label the output wire with the secret 𝑠;

• For each AND gate whose output wire 𝑤 has a label 𝑠𝑤, assign labels 𝑠𝑢 and 𝑠𝑣 to the input wires 𝑢
and 𝑣 respectively, where 𝑠𝑢, 𝑠𝑣 are random subject to 𝑠𝑢 + 𝑠𝑣 = 𝑠𝑤.

In the example above, we will let these labels be random 𝑠1 and 𝑠2 s.t. 𝑠1 + 𝑠2 = 𝑠.

• For each OR gate whose output wire 𝑤 has a label 𝑠𝑤, assign labels 𝑠𝑢 and 𝑠𝑣 to the input wires 𝑢
and 𝑣 respectively, where 𝑠𝑢 = 𝑠𝑤 and 𝑠𝑣 = 𝑠𝑤.

• The 𝑖-th share consists of the labels for all input wires that use the variable 𝑥𝑖.

In the example above, we will let the label of the 𝑥1 input wire be 𝑠1; that of the 𝑥3 input wire
be 𝑠2; and that of the 𝑥2 input wire be the pair (𝑠1, 𝑠2).

Given labels corresponding to a set of input wires {𝑖 ∶ 𝑥𝑖 = 1}, it is not hard to see that we can recover
the labels of every wire that evalutes to 1 on input 𝐱 = (𝑥1, … , 𝑥𝓁), in particular the output wire. On the
other hand, for every wire that evalutes to 0, the label is completely hidden. This gives us correctness and

9



secrecy. Furthermore, the reconstruction function which takes as input a subset of the shares (correspond-
ing to a vector 𝐱) and outputs the secret (if 𝑓 (𝐱) = 1) is a linear function. So the scheme above is a linear
secret sharing scheme.

In general a linear secret sharing scheme consists of:

• A sharing algorithm that takes as input a secret 𝑠 ∈ ℤ𝑝 and a monotone Boolean function 𝑓 , and
outputs a sequence of numbers (𝛼1, … , 𝛼𝑚) together with a function 𝜌 ∶ [𝑚] → [𝓁].

• A reconstruction algorithm which, for every 𝐱 ∈ {0, 1}𝓁 s.t. 𝑓 (𝐱) = 1, gets a subset of the shares

𝛼𝐱 ∶= (𝛼𝑖 ∶ 𝑥𝜌(𝑖) = 1)

and outputs the secret 𝑠. Moreover, this is a linear function: there is a vector 𝑓𝐱 such that the output
of the reconstruction algorithm is 𝑓𝐱𝛼𝑇

𝐱 .

4.2 The GPSW ABE scheme

• msk = 𝑠 and mpk = [𝑡1]1, … , [𝑡𝓁]1, [𝑠]𝑇 .

• Enc(mpk, 𝑥1, … , 𝑥𝓁, 𝑚) where 𝑥𝑖 ∈ {0, 1} computes

[𝑟𝑡1 ⋅ 𝑥1]1, … , [𝑟𝑡𝓁 ⋅ 𝑥𝓁]1, [𝑟𝑠 + 𝑚]𝑇

• Keygen(msk, 𝑓 ) where 𝑓 is an NC1 circuit does the following: using the LSS scheme for 𝑓 , compute
a set of numbers (𝛼1, … , 𝛼𝑚) together with a mapping 𝜌 ∶ [𝑚] → [𝓁] denoting which index / party
each share belongs to. The secret key for 𝑓 consists of

([𝛼𝑖 ⋅ 𝑡−1𝜌(𝑖)]2)𝑖∈[𝑚]

• Dec first computes
[𝑟𝛼𝑖]𝑇

for each 𝑖 ∈ [𝑚] for which 𝑥𝜌(𝑖) = 1. From this, using LSS reconstruction, compute [𝑟𝑠]𝑇 and therefore
[𝑚]𝑇 .

References

[BBG05] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with constant
size ciphertext. Cryptology ePrint Archive, Paper 2005/015, 2005.

[BF03] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM J.
Comput., 32(3):586–615, 2003.

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In Theory of
Cryptography: 18th International Conference, TCC 2020, Durham, NC, USA, November 16–19, 2020,
Proceedings, Part I 18, pages 210–228. Springer, 2020.

10


	Bilinear Maps
	Degree-1 FE: A Warmup
	Simulation Security
	An Extension
	FE Through The Lens of PSM Protocols

	Degree-2 FE from Bilinear Maps
	The FE Scheme
	From Degree-(1,O(1)) FE to Degree-(2,O(1)) FE

	ABE for NC1 Functions
	A Tool: Linear Secret Sharing (LSSS)
	The GPSW ABE scheme


