
Cryptography and Complexity Theory

1 Games

We can encode the game rock-paper-scissors as a “payoff” matrix:

rock paper scissors
rock (0, 0) (−1, 1) (1, −1)

paper (1, −1) (0, 0) (−1, 1)

scissors (−1, 1) (1, −1) (0, 0)

The entries of the matrix describe the “point value” of a pair of actions to each player.
More generally, we can make the following definition, where 𝑃 denotes the number of players in the

game, and [𝐴] = {1, … , 𝐴} index the actions available to each player (for simplicity, we assume all players
have the same number of actions available to them).

Definition 1 (Game). Let 𝑃, 𝐴 ∈ ℕ. A game1 consists of a function Payoff
𝑝
∶ [𝐴]

𝑃
→ ℝ for each player

𝑝 ∈ [𝑃].

In the field of Game Theory, one seeks to understand what strategies “self-interested” and “rational”
actors ought to pursue in a given game. This theory has had enormous influence, especially in economics
but also in other areas. Perhaps its central theorem is due to Nash.

Theorem 2 (Informal [Nas50]). Every game has an “optimal” strategy.

If you have never seen this before, it is worth pausing to consider this. The definition of a game is
incredibly general. What might “an optimal” strategy mean? A priori, it seems difficult to give a definition
that is both meaningful and that exists for every game.

Let’s investigate the game rock-paper-scissors. It is easy to see no single action is best. However, there
is an intuitively optimal strategy for rock-paper-scissors: select a uniformly random element of {rock,
paper, scissor}. This motivates the following definition.

Definition 3 (Mixed Strategy). A mixed strategy 𝑆 is a distribution on [𝐴]. For mixed strategies 𝑆1, … , 𝑆𝑃 ,
let

Payoff
𝑝
(𝑆1, … , 𝑆𝑃 ) = 𝔼

𝑎1←𝑆1,…,𝑎𝑃←𝑆𝑃

[Payoff
𝑝
(𝑎1, … , 𝑎𝑃 )].

Can we get some mathematical handle on what mixed strategies self-interested rational actors will use
in an arbitrary game? Nash had the following brilliant idea.

Definition 4 (Nash Equilibrium). Strategies 𝑆1, 𝑆2, … , 𝑆𝑃 are a Nash equilibrium if for every player 𝑝 ∈ [𝑃]

and every mixed strategy 𝑆
′, we have

Payoff
𝑝
(𝑆1, … , 𝑆𝑃 ) ≥ Payoff

𝑝
(𝑆1, … , 𝑆𝑖−1, 𝑆

′
, 𝑆𝑖+1, … 𝑆𝑃 ).

Intuitively, this means that no individual player has an incentive to change their strategy, which is
why it is called an equilibrium. In rock-paper-scissors (indeed, any two-player zero-sum game), there is
a unique Nash equilibrium, which also corresponds to (for example) the “maxi-min” strategy (where one
maximizes your worst-case success probability over any enemy mixed strategy).

We can now state Nash’s theorem formally.
1Technically, this is refered to as a normal form game.

1



Theorem 5 ([Nas50]). Every game has a Nash equilibrium.

We note that Nash equilibria are not necessarily unique, and are not necessarily the “best” strategy.
Consider,

stag hare
stag (3, 3) (0, 1)

hare (1, 0) (1, 1)

Stag-stag and hare-hare are both Nash equilibria, but stag-stag is clearly the best strategy.
We will sketch the proof of Nash’s theorem, assuming Brouwer’s fixed point theorem.

Theorem 6 (Brouwer’s Fixed PointTheorem). Let 𝑓 ∶ [0, 1]
𝑑
→ [0, 1]

𝑑 be a continuous function. Then there
exists an 𝑥 ∈ [0, 1]

𝑑 such that 𝑓 (𝑥) = 𝑥 .

Proof in case where 𝑑 = 1. Apply the intermediate value theorem to 𝑥 − 𝑓 (𝑥). At zero, it is at most 0 and
at one it is at least zero, so somewhere in the interval it must be zero.

In fact, we will need a further generalization (which we will not prove here).

Theorem 7 (Brouwer’s Fixed PointTheorem). Let 𝑋 ⊆ ℝ
𝑑 be compact (closed and bounded) and convex. Let

𝑓 ∶ 𝑋 → 𝑋 be a continuous function. Then there exists an 𝑥 ∈ 𝑋 such that 𝑓 (𝑥) = 𝑥 .

Each of the requirements is necessary to some degree:

• Closure: 𝑓 (𝑥) = 𝑥

2
+ 1/2 has no fixed point on (0, 1).

• Bounded: 𝑓 (𝑥) = 𝑥 + 1 on ℝ

• Convex: 𝑓 (𝑥) = 2𝑥 on [−2, −1] ∪ [1, 2]

Now we will sketch the proof of Nash’s theorem.

Proof Sketch. Let Δ denote the set of distributions on [𝐴]. Note that we can view Δ = {(𝑝1, … , 𝑝𝐴) ∈

[0, 1]
𝐴
∶ 1 = 𝑝1 + ⋯ + 𝑝𝐴}. It can be shown that Δ𝑃 is compact and convex.

Now we will construct a function 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 ∶ Δ
𝑃
→ Δ

𝑃 with the following two properties:

• continuous: 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 is continuous

• improving: Suppose 𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑆1, … , 𝑆𝑃 ) = (𝑆
′

1
, … , 𝑆

′

𝑃
). Then we have that for all 𝑝 ∈ 𝑃 that if there

exists an 𝑆
⋆

𝑝
such that

Payoff
𝑝
(𝑆1, … , 𝑆𝑝−1, 𝑆

⋆

𝑝
, 𝑆𝑝+1, … 𝑆𝑃 ) > Payoff

𝑝
(𝑆1, … , 𝑆𝑃 ),

then
Payoff

𝑝
(𝑆1, … , 𝑆𝑝−1, 𝑆

′

𝑝
, 𝑆𝑝+1, … 𝑆𝑃 ) > Payoff

𝑝
(𝑆1, … , 𝑆𝑃 ).

We leave the construction of 𝐼𝑚𝑝𝑟𝑜𝑣𝑒 as an exercise (the idea is to continuously nudge up the proba-
bilities of actions that improve the payoff for the 𝑝’th player).

Then by Brouwer’s fixed point theorem, we have that there exists 𝑆1, … , 𝑆𝑃 such that 𝑓 (𝑆1, … , 𝑆𝑃 ) =

(𝑆1, … , 𝑆𝑃 ), which implies that it is a Nash equilibrium (by the improving property).

2



2 The Hardness of Computing Nash Equilibrium

In economics, it is common to analyze a system by modeling it as a game and assuming players act accord-
ing to a Nash equilibrium. This seems like quite a reasonable assumption, but what if it is hard to compute
Nash Equilibria? Then one might question the assumption, as real-world players may never reach a Nash
equilibrium. For decades, people tried to find a polynomial-time algorithm for computing a Nash equilib-
rium (for example, one can 𝜖-approximate two-player Nash equilibrium in time 𝑛𝑂(𝜖

−2
log 𝑛) [LMM03]).

Celebrated work [DGP09, CDT09] shows that computing even approximate two-player Nash Equilibria
is complete for the complexity class PPAD (which we will not define here). This class contains, for example,
the Sink-of-Line Problem.

Definition 8 (Sink-Of-Line Problem). Sink-Of-Line is the following task:

• Given: 𝑥𝑠 ∈ {0, 1}
𝑛 and 𝑇 ∈ [2

𝑛
] and

– a “successor” circuit 𝑆 ∶ {0, 1}
𝑛
→ {0, 1}

𝑛 and

– a “verifier” circuit 𝑉 ∶ {0, 1}
𝑛
× [2

𝑛
] satisfying 𝑉 (𝑥, 𝑖) = 1[𝑥 = 𝑆

𝑖−1
(𝑥𝑠))]

• Output: 𝑤 ∈ {0, 1}
𝑛 such that 𝑉 (𝑤, 𝑇 ) = 1.

Using cryptography, we can show that the sink-of-line problem is hard and hence so is computing a
Nash equilibrium.

Theorem 9 ([BPR15]). Assume subexponentially secure iO and subexponentially secure injective PRGs exist.
Then Sink-Of-Line is hard (and hence, so is computing approximate Nash Equilibria).

Proof. We set up some notation:

• Let 𝜆 be a sufficiently large polynomial in 𝑇 .

• Let 𝑃𝑅𝐹𝐾 ∶ {0, 1}
𝜆
→ {0, 1}

𝜆 be a subexponentially secure puncturable PRF. 𝑃𝑅𝐹
𝐾{𝑥}

denotes the PRF
punctured at 𝑥 .

• 𝐺 be the injective pseudorandom generator that outputs 2𝜆 bits. We will run 𝐺 on inputs of length
log 𝑇 , in which case it has security 𝑇

Ω(1) or inputs of length 𝜆 in which case it has security 2
𝜆
Ω(1) .

Now consider the following distributions on circuits.

Sample 𝐾 ← {0, 1}
𝜆 and 𝐹 = 𝑃𝑅𝐹𝐾 . Output

𝑖𝑂

⎛

⎜

⎜

⎜

⎝

(𝑖 ∈ [𝑇 ], 𝜎 ∈ {0, 1}
𝜆
) ↦

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⊥, if 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎠

We will show that this distribution on circuits is 2−𝑇Ω(1) indistinguishable from a distribution on circuits
that never output SOLVED. This implies that Sink-of-Line cannot be solved in time 2−𝑇Ω(1) . We now give
the hybrid argument. Below ≈ means 2−𝜆Ω(1) indistinguishable except the blue ≈ which means 𝑇−Ω(1) in-
distinguishable (we only use this in one hybrid, which is important because we will have 𝑇 hybrids).

3



𝑖𝑂

⎛

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⊥, if 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆 and 𝐹 = 𝑃𝑅𝐹𝐾

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝐺(𝑖) = 𝑟

⊥, if 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝐹 = 𝑃𝑅𝐹𝐾 , and

𝑟 ← {0, 1}
2𝜆

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝐺(𝑖) = 𝑟

⊥, if 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝐹 = 𝑃𝑅𝐹𝐾 , and

𝑠 ← [𝑇 ], 𝑟 = 𝐺(𝑠)

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 = 𝑠

⊥, if 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝐹 = 𝑃𝑅𝐹𝐾 , 𝑠 ←

[𝑇 ]

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 = 𝑠 + 1 and 𝜎 ≠ 𝜎𝑠+1

⊥, if 𝑖 = 𝑠

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾{𝑠+1},

𝜎𝑠+1 = 𝑃𝑅𝐹𝐾 (𝑠 + 1)

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 = 𝑠 + 1 and 𝜎 ≠ 𝜎𝑠+1

⊥, if 𝑖 = 𝑠

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾{𝑠+1},

𝜎𝑠+1 ← {0, 1}
𝜆

≈

𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 = 𝑠 + 1 and 𝐺(𝜎) ≠ 𝑣𝑠+1

⊥, if 𝑖 = 𝑠

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾{𝑠+1}, 𝜎𝑠+1 ←

{0, 1}
𝜆, 𝑣𝑠+1 = 𝐺(𝜎𝑠+1)

≈
𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 = 𝑠 + 1

⊥, if 𝑖 = 𝑠

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾{𝑠+1}

≈
𝑖𝑂

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎩

⊥, if 𝑖 ∈ {𝑠, 𝑠 + 1}

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

SOLVED, if 𝑖 = 𝑇

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾

≈

⋯ ≈
𝑖𝑂

⎛

⎜

⎜

⎜

⎝

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

⊥, if 𝑖 ≠ 𝑠 + 1 and 𝜎 ≠ 𝐹(𝑖)

⊥, if 𝑖 ∈ {𝑠, … 𝑇 }

(𝑖 + 1, 𝐹(𝑖 + 1)), otherwise.

⎞

⎟

⎟

⎟

⎠

where 𝐾 ← {0, 1}
𝜆, 𝑠 ← [𝑇 ], 𝐹 = 𝑃𝑅𝐹𝐾

4



3 Branching Programs

Branching programs are a model of computation used to study non-uniform space-bounded algorithms.

Definition 10 (Branching Program). An 𝐿-layer 𝑊 -width branching program with 𝑛-inputs consists of

• nodes 𝑣 = (𝓁, 𝑤) ∈ [𝐿] × [𝑊] (we say 𝑣 is in layer 𝓁)

• a special “start” node in the first layer and special “accept” and “reject” nodes in the last layer

• an input 𝑖𝑣 ∈ [𝑛] associated with each node

• From each node (except for those in the last layer), two directed edges 𝑒0 and 𝑒1 which go to nodes in the
next layer (if there is one).

On input 𝑥 , the output of a branching program is obtained by beginning at the start node, reading the input
bit associated with it, following the corresponding edge, and repeating until one reaches either accept or reject.

For example, there is a simple width-two branching program for the OR function, the AND function,
and addition modulo two. Can width-two branching programs compute everything? One can show that
they cannot compute majority (no matter how large they are). On the other hand, width-three branching
programs of exponential size can compute all functions (consider a DNF).

It is natural to conjecture that width-three branching programs are quite weak.

Conjecture 11 ([BDFP83]). Any constant width branching program for Majority requires exponential-size.

A significant amount of work (including by cryptographers Yao and Ajtai) makes partial progress
toward this conjecture. But it turns out this conjecture is false! Our exposition closely follows Viola and
Zhou’s.2

Theorem 12 ([Bar86]). Every 𝑛-input 𝑑-depth circuit can be computed by a branching program of width 5

and length 4
𝑑 .

Amazingly, there is some sense in which this theorem is true for the same reason one, famously, cannot
solve a quintic equation using “nice algebraic operations.”

Recall, the group 𝑆5 = {permutations 𝜋 ∶ [5] → [5]}, where multiplication denotes function composi-
tion. A permutation 𝜋 is a cycle if 𝜋 𝑖

(1) is distinct for all 𝑖 ∈ [5]. We write such a 𝜋 in cycle notation as
(1 𝜋(1) … 𝜋

4
(1)). Let 𝑒 denote the identity permutation.

It will be useful to consider a special type of branching program that (in some sense) corresponds to
computing over 𝑆5.

Definition 13 (𝑆5-Program). An 𝓁-length 𝑛-input 𝑆5-program consists of three tuples:

• group elements (𝑔0
1
, … , 𝑔

0

𝓁
) ∈ 𝑆

𝓁

5
,

• group elements (𝑔1
1
, … , 𝑔

1

𝓁
) ∈ 𝑆

𝓁

5
, and

• indices (𝑘1, … , 𝑘𝓁) ∈ [𝑛]
𝓁.

2https://www.khoury.northeastern.edu/home/viola/classes/gems-08/lectures/le11.
pdf

5

https://www.khoury.northeastern.edu/home/viola/classes/gems-08/lectures/le11.pdf
https://www.khoury.northeastern.edu/home/viola/classes/gems-08/lectures/le11.pdf


The output of the program 𝑃 on input 𝑥 is

𝑃(𝑥) =

𝓁

∏

𝑖=1

𝑔
𝑥[𝑘𝑖]

𝑖
.

We say 𝑃 𝛼-computes 𝑓 ∶ {0, 1}
𝑛
→ {0, 1} if

𝑃(𝑥) =

{

𝛼, if 𝑓 (𝑥) = 0

𝑒, if 𝑓 (𝑥) = 1.

Any 𝑆5-program can be converted into an equal length width five branching program.

Proposition 14. If an 𝓁-length 𝑆5 program 𝛼-computes 𝑓 , then an 𝓁-length width-5 branching program
computes 𝑓 .

Proof. Consider the branching program where the (𝑗 , 𝑖) goes to (𝜋(𝑗), 𝑖 + 1) where 𝜋 = 𝑔
𝑥[𝑘𝑖]

𝑖
. Since 𝛼

cannot be the identity permutation, there exists some 𝑗⋆ such that 𝛼(𝑗⋆) ≠ 𝑗
⋆. Make the start node (𝑗⋆, 1),

the accept node (𝛼(𝑗⋆), 𝓁) and the reject node (𝑗⋆, 𝓁).

Now we prove some lemmas about 𝑆5 and 𝑆5-programs.

Lemma 15 (Cycles are Conjugate). Let 𝛼, 𝛽 ∈ 𝑆5 be cycles. Then there is a 𝜌 ∈ 𝑆5 such that 𝛽 = 𝜌
−1
𝛼𝜌.

Proof. Write 𝛼 = (𝛼1 … 𝛼5) and 𝛽 = (𝛽1 … 𝛽5). Then set set 𝜌(𝛽𝑖) = 𝛼𝑖.

Lemma 16 (Choice of Cycle is Irrelevant). Let 𝛼, 𝛽 ∈ 𝑆5 be cycles. If there is a length-𝓁 𝑆5-program that
𝛼-computes 𝑓 , then there is an 𝓁-length 𝑆5-program that 𝛽-computes 𝑓 .

Proof. By the previous lemma, pick 𝜌 such that 𝛽 = 𝜌
−1
𝛼𝜌. If an 𝑆5 programwith (𝑔0

1
, … , 𝑔

0

𝓁
) and (𝑔1

1
, … , 𝑔

1

𝓁
)

𝛼-computes 𝑓 , then the same program but with (𝜌
−1
𝑔
0

1
, … , 𝑔

0

𝓁
𝜌) and (𝜌−1𝑔1

1
, … , 𝑔

1

𝓁
𝜌) 𝛽-computes 𝑓 . This is

because 𝜌−1𝑒𝜌 = 𝑒 and 𝜌
−1
𝛽𝜌 = 𝛼

Lemma 17 (Computing Negation). If an 𝓁-length 𝑆5-program 𝛼-computes 𝑓 , then a program of the same
length computes ¬𝑓 .

Proof. By previous lemma, we can 𝛼
−1-compute 𝑓 in the same length. Multiplying 𝑔

0

𝓁
and 𝑔

1

𝓁
by 𝛼 then

computes ¬𝑓 .

Lemma 18 (Computing AND). If 𝑓 is 𝓁-length 𝛼-computable and 𝑔 is 𝓁-length 𝛽-computable, then 𝑓 ∧ 𝑔 is
4𝓁-length 𝛼𝛽𝛼

−1
𝛽
−1-computable.

Proof. Consider the 4𝓁-length program that concatenates the following programs:

1. 𝛼-compute 𝑓

2. 𝛽-compute 𝑔

3. 𝛼−1-compute 𝑓

4. 𝛽−1-compute 𝑔 .

6



If 𝑓 (𝑥) ∧ 𝑔(𝑥) = 1, then the output of this program is 𝛼𝛽𝛼−1
𝛽
−1. But if 𝑓 (𝑥) = 0, then the output is

𝑒𝛽𝑒𝛽
−1

= 𝑒, and similarly if 𝑔(𝑥) = 0.

Lemma 19 (Cycles Conjugate to their Commutator). There are cycles 𝛼 and 𝛽 such that 𝛼𝛽𝛼−1
𝛽
−1 is a cycle.

Proof. For example, consider 𝛼 = (12345) and 𝛽 = (13542).

By induction, we then have the following theorem, which implies Barrington’s theorem.

Theorem 20. Let 𝑓 be a function computable by a 𝑑-depth circuit. For every cycle 𝛼, 𝑓 is 4𝑑-length 𝛼-
computable.

4 Perfect Randomized Encodings andTheir Applications

Definition 21 ([AIK04]). A perfect local randomized encoding for a function 𝑓 ∶ {0, 1}
𝑛
→ {0, 1} consists of

two algorithms 𝐸𝑛𝑐 and 𝐷𝑒𝑐 with the following two properties:

• Functionality: 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑥)) = 𝑓 (𝑥) for all 𝑥

• Locality: 𝐸𝑛𝑐(𝑥) is computable by an NC0 circuit

• Secrecy: There is a simulator 𝑆𝑖𝑚 such that 𝑆𝑖𝑚(𝑓 (𝑥)) is identical to the distribution 𝐸𝑛𝑐(𝑥).

• Balanced: 𝑆𝑖𝑚 run on a uniformly random bit is distributed uniformly at random.

• Output Length: If 𝐸𝑛𝑐 takes 𝑞 bits of randomness, then it outputs at least 𝑞 + 1 bits.

Perhaps surprisingly, perfect local randomized encodings exist unconditionally.

Theorem 22 ([AIK04]). For every 𝑑-depth circuit 𝐶 ∶ {0, 1}
𝑛
→ {0, 1}, there is a perfect local randomized

encoding where 𝐸𝑛𝑐, 𝐷𝑒𝑐 and 𝑆𝑖𝑚 run in poly(𝑛, 2
𝑑
) time.

Proof. We won’t quite prove the theorem (mostly because 5! is not a power of two) but we will prove
something close.

We know that we can 𝛼-compute 𝐶 with a group program over 𝑆5

𝐶(𝑥) =

𝓁

∏

𝑖=1

𝑔
𝑥[𝑘𝑖]

𝑖
,

where 𝓁 = 4
𝑑 .

The output of 𝐸𝑛𝑐(𝑥; 𝑟) will be

(𝑔
𝑥[𝑘1]

1
𝑟
−1

1
, 𝑟1𝑔

𝑥[𝑘2]

2
𝑟
−1

2
, … , 𝑟𝓁−1𝑔

𝑥[𝑘𝓁]

𝓁
)

where we sample 𝑟1, … , 𝑟𝓁−1 ← 𝑆5 using the randomness 𝑟 (note: there is an annoying problem here with
sampling these because 5! is not a power of two.). It is easy to see that this is computable in constant depth.
If 5! were a power of two, then 𝐸𝑛𝑐 would take (𝓁 − 1) log

2
(120) bits of randomness and output a string of

length 𝓁 log
2
(120).

We then decode by evaluating the group program. Finally, to simulate given output 𝑏 we just output
uniformly random group elements (𝑔1, … , 𝑔𝓁) with the constraint that they decode to 𝑏 . Note this not
balanced because the product of the group elements will always either be 𝑒 or 𝛼.

7



As a corollary, we get that 𝑂(log 𝑛)-depth PRGs (for which there are many candidates) imply constant
depth PRGs (with small stretch).

Corollary 23 ([AIK04]). Suppose there is a PRG 𝐺 ∶ {0, 1}
𝑛
→ {0, 1}

𝑚 computable in 𝑑-depth and 𝑠-size.
Then there is a PRG 𝐺

′
∶ {0, 1}

𝑛+𝑞𝑚
→ {0, 1}

(𝑞+1)𝑚 computable with a constant-depth circuit of size poly(𝑠, 4𝑑)
for some 𝑞.

Proof. Let 𝐸𝑛𝑐 be a perfect local randomized encoding for𝐺 (since𝐺 has multiple outputs, we concatenate
in the natural way). Let𝐺′

(𝑥) = 𝐸𝑛𝑐(𝑥). Any distinguisher𝐷′ implies a distinguisher𝐷 for𝐺. In particular,
𝐷(𝑦) = 𝐷

′
(𝑆𝑖𝑚(𝑦)). In particular, letting 𝑈 denote uniformly random inputs, we have that

𝐷(𝑈) ≡ 𝐷
′
(𝑆𝑖𝑚(𝑈)) ≡ 𝐷

′
(𝑈)

and that
𝐷(𝐺(𝑈)) ≡ 𝐷

′
(𝑆𝑖𝑚(𝐺(𝑈))) ≡ 𝐷

′
(𝐺

′
(𝑈)),

so 𝐷 has exactly the same distinguishing advantage that 𝐷′ has.

Recall, to construct iO, we needed to assume the existence of local PRGs with large (polynomial)
stretch.

References

[AIK04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in nc0. In FOCS, pages
166–175. IEEE Computer Society, 2004.

[Bar86] David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize ex-
actly those languages in nc1. In STOC, pages 1–5. ACM, 1986.

[BDFP83] Allan Borodin, Danny Dolev, Faith E. Fich, andWolfgang J. Paul. Bounds for width two branch-
ing programs. In STOC, pages 87–93. ACM, 1983.

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of finding a nash
equilibrium. In FOCS, pages 1480–1498. IEEE Computer Society, 2015.

[CDT09] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-player
nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

[DGP09] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complexity of
computing a nash equilibrium. Commun. ACM, 52(2):89–97, 2009.

[LMM03] Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using simple
strategies. In EC, pages 36–41. ACM, 2003.

[Nas50] John F. Nash. Equilibrium points in ¡i¿n¡/i¿-person games. Proceedings of the National Academy
of Sciences, 36(1):48–49, 1950.

8


	Games
	The Hardness of Computing Nash Equilibrium
	Branching Programs
	Perfect Randomized Encodings and Their Applications

