
Lattices and the LLL Algorithm
Lattices are beautiful mathematical objects with applications all over mathematics and theoretical com-
puter science. Examples include:

• Sphere Packing: A classical problem called the “Sphere Packing Problem” asks for a way to pack
the largest number of spheres of equal volume in 3-dimensional space (in an asymptotic sense, as
the volume of the available space goes to infinity). The so-called Kepler’s Conjecture, turned into a
theorem by Hales, states that the face-centered cubic lattice offers the optimal packing of spheres in
3 dimensions.
Higher dimensional settings form a fascinating question in the geometry of numbers (the study
of lattices). The dimension-8 and 24 cases were recently resolved in exciting works by Viazovska
showing that the so-called 𝐸8 lattice provides the optimal packing in dimension 8, and by Cohn, Ku-
mar, Miller, Radchenko and Viazowska showing that the so-called Leech lattice provides the optimal
packing in dimension 24.
How about other dimensions? This remains a mystery.

• Error Correcting Codes: Generalizing to 𝑛 dimensions, the sphere packing problem and friends
have applications to constructing error-correcting codes with the optimal rate.

• Number Theory: In mathematics, the study of lattices is called the “Geometry of Numbers”, a
term coined by Hermann Minkowski. Minkowski’s Theorem and subsequent developments have
had an enormous impact on Number Theory, Functional Analysis and Convex Geometry. Lattices
have been used to test various number theoretic conjectures, the most famous being a disproof of
Merten’s Conjecture by Odlyzko and te Riele in 1985.

Lattices have also been quite influential in Theoretical Computer Science:

• In Algorithms: The famed Lenstra-Lenstra-Lovász (LLL) algorithm for the shortest vector problem
that we will see today has generated a treasure-trove of algorithmic applications. Lattices have been
used to construct an Integer Linear Programming algorithm in constant dimensions, in factoring
polynomials over the rationals, and algorithms to find small solutions to systems of polynomial
equations.

• In ComplexityTheory: Lattices provide one of the most striking sources of problems with a worst-
case to average-case connection. NP-hard problems are widely believed to be hard in the worst case,
but are they hard on typical or “average” instances? (Note that these terms have to be defined
precisely: by endowing the input space with a probability distribution that defines what “typical”
or “average” means.) For many problems and many average-case distributions, we know that this is
not the case. In contrast, for the (approximate) shortest vector problem, we can show that finding
a solution in a “random lattice” chosen from a certain easily sampleable distribution is as hard as
finding a solution in the worst case, namely for arbitrary lattices.

• In Cryptography: The first applications of lattices in Cryptography have been in breaking cryp-
tosystems, for example, variants of the knapsack cryptosystem, the NTRU cryptosystem and special
cases of the RSA function. More recently, however, lattices have been used quite successfully in
constructing secure cryptographic algorithms that achieve highly expressive functionalities such as
fully homomorphic encryption.

1

In this course, we will study lattices from the point of view of theoretical computer science, first the
mathematics of lattices, then the algorithms and complexity theory and finally lattice-based cryptography.

Notation. We will denote the natural numbers by ℕ, integers by ℤ, rationals by ℚ and the reals by ℝ.

1 Lattices

Throughout, we treat all vectors as column vectors unless otherwise specified. For a matrix 𝐁 (resp. row
vector 𝐯), 𝐁𝑇 (resp. 𝐯𝑇) denotes the transpose of 𝐁 (resp. 𝐯).

Definition 1 (Lattices). Given 𝑛 linearly independent vectors 𝐛1, … , 𝐛𝑛 ∈ ℝ
𝑚, the lattice generated by them

is defined as

(𝐛1, … , 𝐛𝑛) ≝

{
𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖 | 𝑥𝑖 ∈ ℤ

}

We call 𝐛1, … , 𝐛𝑛 a basis of the lattice. Note that the definition requires 𝐛1, … , 𝐛𝑛 to be linearly independent
over ℝ (and not over ℤ). For example, the two vectors (1 0)

𝑇 and (

√

2 0)
𝑇 do not form a basis for a lattice

according to this definition since they are not linearly independent over ℝ, even though they are linearly
independent over ℤ.

We call 𝑛 the rank of the lattice, and 𝑚 the dimension of the lattice. In general, 𝑛 ≤ 𝑚. When 𝑛 = 𝑚,
we call the lattice a full-rank lattice. Throughout this course, we will focus on full-rank lattices although
most results we prove can be generalized to the non full-rank case.

We will use a notational short-hand when dealing with bases, letting a matrix 𝐁 whose columns are
the basis vectors 𝐛1, … , 𝐛𝑛 denote a lattice basis. That is, we will write

𝐁 =

⎛

⎜

⎜

⎝

| |

𝐛1 … 𝐛𝑛

| |

⎞

⎟

⎟

⎠

and thus, in this notation,
(𝐁) ≝ {𝐁𝐱 | 𝐱 ∈ ℤ

𝑛
}

Examples of Lattices.

1. Figure 1(a) shows the lattice in 2 dimensions generated by the vectors (1, 0)𝑇 and (0, 1)
𝑇 . This lattice

is the set of all points in ℝ
2 with integer coordinates.

This can be generalized to 𝑛 dimensions, where the lattice ℤ
𝑛 is called the integer lattice.

2. Figure 1(b) shows a different basis for the same lattice, namely the basis consisting of the vectors
(1, 2)

𝑇 and (2, 3)
𝑇 .

3. Figure 1(c) shows a different lattice in 2 dimensions, generated by the basis vectors (2, 0)𝑇 and (1, 1)
𝑇 .

Note that this is a sub-lattice of ℤ2, namely a subset of ℤ2 which is also a lattice. (We will formally
define sublattices later in the course).

2

𝑏2

𝑏1

(a) The lattice ℤ
2 with basis vectors (0, 1) and (1, 0).

𝑏1

𝑏2

(b) The lattice ℤ
2 with a different basis consisting of vectors

(1, 2) and (2, 3). In fact, any lattice has infinitely many bases.

𝑏1

𝑏2

(c) A full-rank lattice generated by the basis vectors (1, 1) and
(2, 0). Note that this is a sub-lattice of ℤ2.

𝑏1

(d) A non full-rank lattice with basis vector (1, 1)

Figure 1: Various lattices and their bases.

3

4. In one dimension, all lattices are multiples of a single number. For example, the lattice generated by
(2) is the set of all even numbers.

5. All the examples we saw so far are full-rank lattices. Figure 1(d) shows a lattice in 2 dimensions
generated by the vector (1, 1)𝑇 – this lattice has rank 1. We will not deal with non full-rank lattices
in this course.

6. The set of points generated by (1) and (

√

2) in one dimension is not a lattice. First, this example does
not conform to Definition 1 since 1 and

√

2 are linearly dependent over ℝ.
Secondly, it turns out that any 𝑛-dimensional lattice is a discrete subgroup of ℤ𝑛. However, the
set generated by (1) and (

√

2) is not a discrete subset of ℤ since one can generate arbitrarily small
numbers as linear combinations of 1 and

√

2.

It is instructive to compare the definition of a lattice generated by 𝑛 linearly independent vectors
𝐛1, … , 𝐛𝑛 to the definition of the span of these vectors.

Definition 2 (Span). Given 𝑛 linearly independent vectors 𝐛1, … , 𝐛𝑛 ∈ ℝ
𝑚, their span is defined as

Span(𝐛1, … , 𝐛𝑛) ≝

{
𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖 | 𝑥𝑖 ∈ ℝ

}

Note the difference between Definition 1 of a lattice generated by a set of vectors – which consists
of all of its integer linear combinations – and the above definition of the span of a set of vectors – which
consists of all of its linear combinations with real coefficients. The crucial power of lattices comes from
the fact that it is a discrete set. Clearly, Span(𝐛1, … , 𝐛𝑛) ⊃ (𝐛1, … , 𝐛𝑛).

2 Same Lattice, Many Bases

We already saw from the examples above (Figure 1(a) and Figure 1(b)) that the same lattice can have many
different bases. For example, it turns out that all the bases given below generate the same lattice, namely
ℤ

2:
𝐁1 =

(

1 0

0 1)
and 𝐁2 =

(

2 1

1 1)
and 𝐁3 =

(

647 64

91 9)

but the following basis does not generate ℤ
2, but only a proper sub-lattice of ℤ2.

𝐁4 =
(

42 41

9 8)

In fact, any lattice has infinitely many bases. In particular, the bases can have arbitrarily large coefficients.

A natural question to ask is: how can we efficiently tell if two given bases 𝐁 and 𝐁′ generate the same lattice?
We will give two answers to this question – an algebraic answer and a geometric answer.

2.1 An Algebraic Characterization using Unimodular Matrices

Our first characterization provides an efficient algorithm to determine if two bases generate the same
lattice. In order to present the characterization, we first need to define the notion of a unimodular matrix.

4

Notation. For any 𝑥 ∈ ℝ, we will let |𝑥| represent the absolute value of 𝑥 .

Definition 3. A matrix 𝐔 ∈ ℤ
𝑛×𝑛 is unimodular if | det(𝐔)| = 1.

Here, det(𝐔) denotes the determinant of the (square) matrix 𝐔, and | ⋅ | denotes the absolute value. For
example, the matrix (

2 1

1 1)
is unimodular, and so is (647 64

91 9)
, but not (42 41

9 8)
.

Proposition 4. If 𝐔 is unimodular, so is 𝐔−1.

We can now state the characterization of equivalent bases.

Theorem 5. Given two full-rank bases 𝐁 ∈ ℝ
𝑛×𝑛 and 𝐁′

∈ ℝ
𝑛×𝑛, the following two conditions are equivalent:

• (𝐁) = (𝐁′
)

• There exists a unimodular matrix 𝐔 such that 𝐁′
= 𝐁𝐔.

Proof. (“⇒”) First, assume that (𝐁) = (𝐁′
). Then, there are integer matrices 𝐕 and 𝐕

′ such that

𝐁
′
= 𝐁𝐕 and 𝐁 = 𝐁

′
𝐕
′

It suffices to show that | det(𝐕)| = | det(𝐕
′
)| = 1.

Putting these two equations together, we have𝐁′
= 𝐁𝐕 = 𝐁

′
(𝐕

′
𝐕). Since𝐁′ is non-singular (remember:

𝐁 is a full-rank matrix, and so is 𝐁′) we can multiply both sides of the equation by (𝐁
′
)
−1 and we get

𝐕
′
𝐕 = 𝟏𝑛 (1)

were 𝟏𝑛 denotes the 𝑛-by-𝑛 identity matrix.
Since determinant is multiplicative, we get det(𝐕′

) det(𝐕) = 1. Since 𝐕 and 𝐕
′ are integer matrices,

their determinant is also an integer.
Putting these two facts together, we see that the only two choices are:

• det(𝐕) = det(𝐕
′
) = 1, or

• det(𝐕) = det(𝐕
′
) = −1

In either case, | det(𝐕)| = | det(𝐕
′
)| = 1, and we are done.

(“⇐”) For the other direction, assume that there is a unimodular matrix 𝐔 such that 𝐁′
= 𝐁𝐔. Then, since

𝐔 is an integer matrix,
(𝐁′

) ⊆ (𝐁)

This is because each vector (column) of 𝐁′ can be written as a linear combination of vectors in 𝐁. Thus, the
set of all integer linear combinations of vectors in𝐁

′ is contained in the set of all integer linear combinations
of vectors in 𝐁.

Now, 𝐁 = 𝐁
′
(𝐔

−1
) where 𝐔

−1 is also unimodular by Proposition 4. This shows that

(𝐁) ⊆ (𝐁′
)

by the same argument as above. Together, we have (𝐁) = (𝐁′
).

5

𝑏2

𝑏1

(a) The lattice ℤ
2 with basis vectors (0, 1) and (1, 0) and

the associated fundamental parallelepiped.

𝑏1

𝑏2

(b) The lattice ℤ
2 with a different basis consisting of vectors

(1, 1) and (2, 1), and the associated fundamental parallelepiped.

Figure 2: Parallelepipeds for various bases of the lattice ℤ
2. Note that the parallelepipeds in either case

do not contain any non-zero lattice point.

2.2 A Geometric Characterization using the Fundamental Parallelepiped

We need the notion of a fundamental parallelepiped of a basis 𝐛1, … , 𝐛𝑛.

Definition 6 (Fundamental Parallelepiped). Given 𝑛 linearly independent vectors 𝐛1, … , 𝐛𝑛 ∈ ℝ
𝑚, their

fundamental parallelepiped is defined as

(𝐛1, … , 𝐛𝑛) ≝

{
𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖 | 𝑥𝑖 ∈ ℝ, 0 ≤ 𝑥𝑖 < 1

}

Thus, pictorially, a fundamental parallelepiped is the (half-open) region enclosed by the vectors 𝐛1, … , 𝐛𝑛.
Clearly, different bases of the same lattice generate different fundamental paralellepipeds. See Figure 2(a)
and 2(b).

Note that in Figures 2(a) and 2(b), the vectors 𝐛1 and 𝐛2 form a basis of the lattice, and the parallelepiped
associated to the basis does not contain any lattice point other than 𝟎. On the other hand, in Figure 3, the
vectors 𝐛1 and 𝐛2 do not form a basis of the lattice, and the parallelepiped associated to the basis contains
a non-zero lattice point. In fact, this is not a coincidence as our next theorem shows.

Theorem 7. Let  be a full-rank 𝑛-dimensional lattice, and let 𝐛1, … , 𝐛𝑛 ∈ ℝ
𝑛 denote linearly independent

vectors in . Then, 𝐛1, … , 𝐛𝑛 form a basis of  if and only if (𝐛1, … , 𝐛𝑛) ∩  = {𝟎}.

6

𝑏1

𝑏2

Figure 3: 𝐛1 and 𝐛2 do not form a basis of ℤ2. Note that the parallelepiped of 𝐛1 and 𝐛2 contains a non-zero
lattice point, namely (1, 0).

Proof. (“⇒”) Suppose that 𝐛1, … , 𝐛𝑛 is a basis of . Let

𝐚 =

𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖 ∈ (𝐛1, … , 𝐛𝑛) ∩ (𝐛1, … , 𝐛𝑛)

We will show that 𝐚 = 𝟎.
Since 𝐚 ∈ (𝐛1, … , 𝐛𝑛), 𝑥𝑖 ∈ ℤ for all 𝑖. Since 𝐚 ∈ (𝐛1, … , 𝐛𝑛), 𝑥𝑖 ∈ [0, 1) for all 𝑖. Together, this means

that 𝑥𝑖 = 0 for all 𝑖, and thus, 𝐚 = 𝟎.

(“⇐”) Suppose that (𝐛1, … , 𝐛𝑛) ∩  = {𝟎}. We would like to show that 𝐛1, … , 𝐛𝑛 form a basis of .
The vectors 𝐛1, … , 𝐛𝑛 are linearly independent. Since they belong to , (𝐛1, … , 𝐛𝑛) ⊆ . What remains

is to show that  ⊆ (𝐛1, … , 𝐛𝑛). Pick any vector 𝐚 ∈  and write it as

𝐚 =

𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖 where 𝑥𝑖 ∈ ℝ

Consider now the vector
𝐚
′
=

𝑛

∑

𝑖=1

⌊𝑥𝑖⌋ 𝐛𝑖 ∈ (𝐛1, … , 𝐛𝑛)

which is clearly in the lattice (𝐛1, … , 𝐛𝑛) since the coefficients ⌊𝑥𝑖⌋ are integers. Therefore, the vector
𝐚 − 𝐚

′ is in (𝐛1, … , 𝐛𝑛) as well. Now,

𝐚 − 𝐚
′
=

𝑛

∑

𝑖=1

(𝑥𝑖 − ⌊𝑥𝑖⌋)𝐛𝑖 ∈ (𝐛1, … , 𝐛𝑛)

is in the parallelepiped of 𝐛1, … , 𝐛𝑛 since 0 ≤ 𝑥𝑖 − ⌊𝑥𝑖⌋ < 1 for all 𝑖.

7

Since 𝐚 − 𝐚
′
∈ (𝐛1, … , 𝐛𝑛) ∩ (𝐛1, … , 𝐛𝑛), it must be the case that 𝐚 − 𝐚

′
= 0 by assumption. Since the

vectors 𝐛1, … , 𝐛𝑛 are linearly independent, this means that 𝑥𝑖 − ⌊𝑥𝑖⌋ = 0 for all 𝑖 which in turn means that
𝑥𝑖 ∈ ℤ for all 𝑖.

Thus, 𝐚 ∈ (𝐛1, … , 𝐛𝑛), showing us that  ⊆ (𝐛1, … , 𝐛𝑛).

2.3 Determinant of a Lattice

Another quantity associated to a lattice is its determinant, denoted det(). The determinant of a lattice
is the 𝑛-dimensional volume of its fundamental parallelepiped, computed as the absolute value of the
determinant of its basis matrix 𝐁. A couple of facts about the determinant of a lattice are worth noting:

1. The parallelepipeds associated with different bases of a lattice have the same volume. Thus, the
determinant is a lattice invariant. This is easy to see using our characterization of equivalent bases
from Theorem 5.
Let 𝐁 and 𝐁

′ be any two lattice bases. By Theorem 5, there is a unimodular matrix 𝐔 such that
𝐁
′
= 𝐁𝐔. Thus, | det(𝐁′

)| = | det(𝐁)| ⋅ | det(𝐔)| = | det(𝐁)| since | det(𝐔)| = 1.

2. Intuitively, the determinant of a lattice is inversely proportional to its “density”. The larger the
determinant, the sparser the lattice.

3 Gram-Schmidt Orthogonalization

Gram-Schmidt orthogonalization is a procedure in linear algebra that transforms a set of vectors 𝐛1, … , 𝐛𝑛

into a set of orthogonal vectors ̃
𝐛1, … ,

̃
𝐛𝑛. In two dimensions, this proceeds as follows:

• The first Gram-Schmidt vector ̃
𝐛1 is 𝐛1 itself.

• The second Gram-Schmidt vector ̃
𝐛2 is the component of 𝐛2 that is orthogonal to Span(̃𝐛1). This can

be computed as
̃
𝐛2 = 𝐛2 −

(

⟨𝐛2,
̃
𝐛1⟩

⟨
̃
𝐛1,

̃
𝐛1⟩

)

̃
𝐛1

See Figure 4 for an illustration of this process.

In general, the Gram-Schmidt vectors are obtained by projecting each vector successively on the space
orthogonal to the span of all the previous vectors.

Definition 8 (Gram-Schmidt Orthogonalization). For a sequence of 𝑛 linearly independent vectors 𝐛1, … , 𝐛𝑛 ∈

ℝ
𝑛, we define their Gram-Schmidt orthogonalization as the sequence of vectors ̃𝐛1, … ,

̃
𝐛𝑛 defined as follows:

̃
𝐛𝑖 = 𝐛𝑖 −

𝑖−1

∑

𝑗=1

𝜇𝑖,𝑗
̃
𝐛𝑗 where 𝜇𝑖,𝑗 =

⟨𝐛𝑖,
̃
𝐛𝑗 ⟩

⟨
̃
𝐛𝑗 ,

̃
𝐛𝑗 ⟩

Thus, ̃𝐛𝑗 is the component of 𝐛𝑖 that is orthogonal to ̃𝐛1, … ,
̃
𝐛𝑖−1. The coefficients 𝜇𝑖,𝑗 are called the Gram-Schmidt

coefficients.

8

̃
𝑏1 = 𝑏1

𝑏2

̃
𝑏2

(a) Gram-Schmidt orthogonalization of the vectors 𝑏1 and 𝑏2

in that order.

𝑏2

̃
𝑏1 = 𝑏1

̃
𝑏2

(b) Gram-Schmidt orthogonalization of the same vectors,
but in the opposite order.

Figure 4: Gram-Schmidt Orthogonalization.

Remarks.

1. True to its name, the different Gram-Schmidt vectors ̃
𝐛1, … ,

̃
𝐛𝑛 are orthogonal to each other. That is,

for each 𝑖 ≠ 𝑗 , ⟨ ̃𝐛𝑖, ̃𝐛𝑗 ⟩ = 0. This is an easy consequence of Definition 8.

2. The span of ̃𝐛1, … ,
̃
𝐛𝑖 is the same as the span of 𝐛1, … , 𝐛𝑖 for all 1 ≤ 𝑖 ≤ 𝑛.

3. The vectors ̃𝐛1, … ,
̃
𝐛𝑛 do not form a lattice basis. In fact, the Gram-Schmidt vectors are not necessarily

in the lattice. See Figure 4 for example.

4. The (Euclidean) length of the Gram-Schmidt vector ̃
𝐛𝑖 is at most the length of the basis vector 𝐛𝑖.

Namely, ‖ ̃𝐛𝑖‖ ≤ ‖𝐛𝑖‖.

5. Clearly, as seen in Figure 4, the Gram-Schmidt vectors depend on the order in which the vectors
𝐛1, … , 𝐛𝑛 are processed.

Let ̃𝐛1/‖ ̃𝐛1‖, … ,
̃
𝐛𝑛/‖

̃
𝐛𝑛‖ denote the unit vectors in the direction of the Gram-Schmidt vectors. Then, the

9

Gram-Schmidt orthogonalization process can be written in matrix form as

⎛

⎜

⎜

⎝

| |

𝐛1 … 𝐛𝑛

| |

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

| |

̃
𝐛1 …

̃
𝐛𝑛

| |

⎞

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 𝜇2,1 𝜇3,1 … 𝜇𝑛,1

0 1 𝜇3,2 … 𝜇𝑛,2

0 0 1 … 𝜇𝑛,3

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

| |

̃
𝐛1

‖
̃
𝐛1‖

…
̃
𝐛𝑛

‖
̃
𝐛𝑛‖

| |

⎞

⎟

⎟

⎟

⎠

⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎝

‖
̃
𝐛1‖ 𝜇2,1‖

̃
𝐛1‖ 𝜇3,1‖

̃
𝐛1‖ … 𝜇𝑛,1‖

̃
𝐛1‖

0 ‖
̃
𝐛2‖ 𝜇3,2‖

̃
𝐛2‖ … 𝜇𝑛,2‖

̃
𝐛2‖

0 0 ‖
̃
𝐛3‖ … 𝜇𝑛,3‖

̃
𝐛3‖

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ‖
̃
𝐛𝑛‖

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Since the vectors ̃
𝐛𝑖

‖
̃
𝐛𝑖‖

are orthonormal, the determinant of the matrix with columns ̃
𝐛𝑖

‖
̃
𝐛𝑖‖

is 1.
Thus, we have

det((𝐁)) =
𝑛

∏

𝑖=1

‖
̃
𝐛𝑖‖

In other words, the Gram-Schmidt orthogonalization process is a volume-preserving transformation
that results in a set of orthogonal vectors ̃

𝐛1, … ,
̃
𝐛𝑛, whose enclosing parallelepiped is rectangular and

generates a volume of det((𝐁)).

4 Successive Minima of a Lattice

A basic parameter of the lattice is the length of the shortest non-zero vector in the lattice (since any lattice
contains the zero vector which has norm zero, we have to ask for a non-zero vector). This parameter is
also called the first successive minimum of the lattice, and is denoted 𝜆1(). When we speak of length, we
mean the Euclidean norm defined as follows: for a vector 𝐱 = (𝑥1, … , 𝑥𝑛) ∈ ℝ

𝑛, the Euclidean norm of 𝐱,
denoted ‖𝐱‖2 (or simply as ‖𝐱‖ is defined as

‖𝐱‖ =

√

𝑛

∑

𝑖=1

𝑥
2

𝑖

The Euclidean norm is also frequently referred to as the 𝓁2 norm. We can speak of other norms such
as the 𝓁1 norm – ‖𝐱‖1 = ∑

𝑛

𝑖=1
|𝑥𝑖| – and the 𝓁∞ norm – ‖𝐱‖∞ = max

𝑛

𝑖=1
|𝑥𝑖|, but we will stick to the Euclidean

norm for most of this course.
Figure 5 shows a shortest vector in the lattice generated by (1, 1) and (2, 0). The shortest vector is not

unique in general. There could be many, even exponentially many, shortest vectors. Clearly, there are at
least two – if 𝐯 is a shortest vector in a lattice, then so is −𝐯.

We will be interested in lower and upper bounds on 𝜆1. We first show a lower bound on 𝜆1 using Gram-
Schmidt orthogonalization. Then, we will prove Minkowski’s theorem which provides an upper bound on
𝜆1 in terms of the determinant of the lattice.

10

𝑏1

𝑏2

Figure 5: The shortest vector in the lattice generated by (1, 1) and (2, 0). 𝜆1() =
√

2.

Lower Bound on 𝜆1. We show that the shortest non-zero vector in a lattice is at least as long as the
shortest Gram-Schmidt vector of (any) basis of the lattice. To see why, observe that a lattice can be parti-
tioned into many hyperplanes perpendicular to its Gram-Schmidt vector ̃𝐛𝑛. See Figure 6 for an illustration
in two dimensions. Now, there are two possibilities:

• There is a shortest non-zero vector in one of the hyper-planes not passing through the origin. In
that case, the vector has to have length at least ‖ ̃𝐛𝑛‖ ≥ min𝑗 ‖

̃
𝐛𝑗 ‖ since the 𝑖

𝑡ℎ such hyper-plane is at
a distance of 𝑖 ⋅ ‖ ̃𝐛𝑛‖ from the origin.

• The shortest non-zero vector lives in the hyper-plane that passes through the origin, in which case,
repeat the same argument in dimension 𝑛 − 1 with the (𝑛 − 1)-dimensional sublattice partitioned
into hyper-planes perpendicular to ̃

𝐛𝑛−1.

Eventually, if the argument reaches dimension 1, the shortest non-zero vector has to have length at
least ‖𝐛1‖ = ‖

̃
𝐛1‖ ≥ min𝑗 ‖

̃
𝐛𝑗 ‖.

The formal statement and proof of the theorem follows.

Theorem 9. Let 𝐁 be a rank-𝑛 lattice basis, and 𝐁̃ be its Gram-Schmidt orthogonalization. Then,

𝜆1((𝐁)) ≥ min
𝑖=1,…,𝑛

‖
̃
𝐛𝑖‖ > 0

Proof. Let 𝐱 ∈ ℤ
𝑛 be any non-zero integer vector. We would like to show that the lattice vector 𝐁𝐱 ∈ (𝐁)

has length at least min𝑖 ‖
̃
𝐛𝑖‖.

The proof follows by calculating the quantity |⟨𝐁𝐱,
̃
𝐛𝑗 ⟩| in two different ways.

11

̃
𝑏1 = 𝑏1

𝑏2

̃
𝑏2

Figure 6: The lattice is partitioned into many parallel hyperplanes perpendicular to ̃
𝐛2. Either the shortest

vector lives in a hyperplane that does not pass through the origin, in which case its length is at least ‖ ̃𝐛2‖
or it lives in the hyperplane that passes through the origin, in which case its length is at least ̃𝐛1 = ‖

̃
𝐛1‖. In

general, in two dimensions, 𝜆1() ≥ min{‖
̃
𝐛1‖, ‖

̃
𝐛2‖}. This argument can be generalized to 𝑛 dimensions.

1. Let 𝑗 ∈ {1, … , 𝑛} be the largest index such that 𝑥𝑗 ≠ 0. Then,

|⟨𝐁𝐱,
̃
𝐛𝑗 ⟩| = |⟨

𝑛

∑

𝑖=1

𝑥𝑖𝐛𝑖,
̃
𝐛𝑗 ⟩| = |

𝑛

∑

𝑖=1

𝑥𝑖⟨𝐛𝑖,
̃
𝐛𝑗 ⟩| = |𝑥𝑗 |⟨

̃
𝐛𝑗 ,

̃
𝐛𝑗 ⟩ = |𝑥𝑗 | ⋅ ‖

̃
𝐛𝑗 ‖

2 (2)

where the first equality follows by rewriting 𝐁𝐱 as ∑
𝑛

𝑖=1
𝑥𝑖𝐛𝑖, the second follows by the linearity of the

inner product, and the third because

• for 𝑗 < 𝑖, ⟨𝐛𝑖, ̃𝐛𝑗 ⟩ = 0

• for 𝑗 > 𝑖, 𝑥𝑗 = 0 by the definition of 𝑗 .

The fourth equality follows by the definition of ‖ ̃𝐛𝑗 ‖2 = ⟨
̃
𝐛𝑗 ,

̃
𝐛𝑗 ⟩.

2. On the other hand,
|⟨𝐁𝐱,

̃
𝐛𝑗 ⟩| ≤ ‖𝐁𝐱‖ ⋅ ‖

̃
𝐛𝑗 ‖ (3)

by the Cauchy-Schwarz inequality.

Putting together Equations 2 and 3, we get

‖𝐁𝐱‖ ≥

|⟨𝐁𝐱,
̃
𝐛𝑗 ⟩|

‖
̃
𝐛𝑗 ‖

= |𝑥𝑗 | ⋅ ‖
̃
𝐛𝑗 ‖ ≥ ‖

̃
𝐛𝑗 ‖ ≥ min

𝑖=1…𝑛

‖
̃
𝐛𝑖‖

12

𝐛1

𝐲

𝐛2 = 𝐳

Figure 7: Constructing lattice basis from a discrete additive subgroup of . After the first iteration if we
choose 𝐲 = (1, 3), then in the (𝐛1, 𝐲) we choose 𝐳 = 𝐛2 which is at the minimum distance from Span(𝐛1).
We can see that there are no non-zero lattice vectors in (𝐛1, 𝐛2). Therefore, {𝐛1, 𝐛2} forms a basis for this
lattice.

where the third inequality follows from the fact that 𝑥𝑗 is a non-zero integer. Since the length of any lattice
vector is at least min𝑖 ‖

̃
𝐛𝑖‖,

𝜆1(𝐁) ≥ min
𝑖=1…𝑛

‖
̃
𝐛𝑖‖

Since 𝐛1, … , 𝐛𝑛 are linearly independent, this quantity is strictly positive.

A corollary of this theorem is that a lattice is a discrete set. In other words, lattice points cannot be
arbitrarily close to one another. Formally:

Corollary 10. For every lattice , there is an 𝜀 = 𝜀() > 0 such that ‖𝐱 − 𝐲‖ ≥ 𝜀 for any two unequal lattice
points 𝐱, 𝐲 ∈ .

Proof. For any two 𝐱 ≠ 𝐲 ∈ , 𝐱 − 𝐲 ∈ . Then, ‖𝐱 − 𝐲‖ ≥ 𝜆1() > 0. In particular, set 𝜀 = 𝜆1() to obtain
the statement of the corollary.

A Basis-Independent Definition. In fact, this leads us to a basis-independent characterization of a
lattice. Namely, every discrete subset of ℝ𝑛 that is closed under subtraction is a lattice. We will omit the
proof and refer to the Micciancio-Goldwasser book for details.

5 Minkowski’s Theorems

Before we state Minkowski’s theorem, we give some intuition on what the length of a shortest lattice
vector might depend on. It stands to reason that denser lattices must have shorter vectors.

13

Recall that the determinant of a lattice is inversely proportional to its density: a larger determinant
implies a less dense lattice. Therefore, we should be able to express an upper bound for 𝜆1 in terms of the
determinant of a lattice.

It is not hard to see that 𝜆1 ≤ det() (Do you see why?). However, this cannot be the right bound;
for example, it does not scale correctly. In particular, if  is an arbitrary lattice with a shortest vector of
length 𝜆1, then lattice defined by scaling every vector in  by 𝑘 should have a shortest vector of length
𝑘𝜆1. However, 𝑑𝑒𝑡(𝑘) = 𝑘

𝑛.
We will now prove a much stronger bound, namely Minkowski’s first theorem. It is not hard to check

that Minkowski’s first theorem scales correctly.

Theorem 11 (Minkowski’s First Theorem). For every full rank lattice ,

𝜆1() ≤
√

𝑛 ⋅ det()1/𝑛.

In order to prove the theorem, we will need to use the following two lemmas.

Lemma 12 (Blichfeld). For all full rank lattice  and measurable set 𝑆 ⊆ ℝ
𝑛 s.t. vol(𝑆) > det(),

∃ 𝐱, 𝐲 ∈ 𝑆, s.t. 𝐱 − 𝐲 ∈ .

See Figure-8 for an example.

Proof. Let 𝐁 be a basis for the lattice . Define 𝑓 ∶ ℝ
𝑛
→ (𝐁) as follows:

𝑓 (∑𝑥𝑖𝐛𝑖) = ∑(𝑥𝑖 − ⌊𝑥𝑖⌋)𝐛𝑖 .

First, note that ∑𝑥𝑖𝐛𝑖 − 𝑓 (∑𝑥𝑖𝐛𝑖) = ∑⌊𝑥𝑖⌋𝐛𝑖 ∈ . Now consider the following 2 cases:

• Case 1: If ∃𝐱, 𝐲 ∈ 𝑆 s.t. 𝑓 (𝐱) = 𝑓 (𝐲) (i.e. we have a collision from two vectors), then, 𝐱 − 𝐲 =

(𝐱 − 𝑓 (𝐱)) − (𝐲 − 𝑓 (𝐲)). But as noted above, 𝐱 − 𝑓 (𝐱) ∈  and 𝐲 − 𝑓 (𝐲) ∈ . Therefore, 𝐱 − 𝐲 ∈ .

• Case 2: Assume there are no collisions. Let 𝑆 = ⋃
𝐱∈ 𝑆𝐱. Define 𝑆𝐱 = 𝑆𝐱−𝐱. By definition, 𝑆𝐱 ⊆ (𝐁).

Also,
vol(𝑆) = ∑

𝐱∈
vol(𝑆𝐱) and vol(𝑆𝐱) = vol(𝑆𝐱) .

Therefore, vol(𝑆) = ∑vol(𝑆𝐱) = ∑vol(𝑆𝐱). But since we assume that we do not have any collisions,
for all 𝐱, 𝐲, 𝑆𝐱⋂𝑆𝐲 = ∅. And so,

vol(𝑆) = ∑vol(𝑆𝐱) = vol(⋃

𝐱∈
𝑆𝐱) ≤ vol((𝐵)) = det()

Therefore, vol(𝑆) ≤ det() which contradicts with our assumption.

14

𝐱

𝐲

𝐱 − 𝐲

Figure 8: By the Blichfeld’s theorem we can find 𝐱 and 𝐲 in this set such that 𝐱 − 𝐲 ∈ .

Definition 13 (Convex Set). A set 𝑆 is convex if:

∀𝑥 ≠ 𝑦 ∈ 𝑆, ∀𝛼 ∈ [0, 1], 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆.

That is, if we take any two points from a convex set, any point that lies on the straight line between
the two points must also be in the set.

Definition 14 (Centrally Symmetric Set). A set 𝑆 is centrally symmetric if:

∀𝑥 ∈ 𝑆, −𝑥 ∈ 𝑆.

Theorem 15 (Minkowski’s Convex Body Theorem). For all full-rank lattice , and a convex centrally sym-
metric set 𝑆 with vol(𝑆) > 2

𝑛
det(), 𝑆 contains a non-zero lattice point.

Proof. Let 𝑆 = {𝐱/2 ∶ 𝐱 ∈ 𝑆}. Then,

vol(𝑆) = 2
−𝑛

⋅ vol(𝑆) > det()

Therefore, by the Blichfeld’s theorem ∃𝐱, 𝐲 ∈ 𝑆 s.t. 𝐱 − 𝐲 ∈ . We will show that 𝐱 − 𝐲 ∈ 𝑆. Now, 2𝐱 ∈ 𝑆

and 2𝐲 ∈ 𝑆 by the construction of 𝑆. Therefore, −2𝐲 ∈ 𝑆 by central symmetry, and 𝐱 − 𝐲 =
2𝐱−2𝐲

2
∈ 𝑆 by

convexity of 𝑆.

We are now ready to prove Minkowski’s first theorem (Theorem 1).

Proof. Let 𝑆 = (0, 𝜆1), where (𝐱, 𝑟) is an n-dimensional open ball of radius 𝑟 centred at 𝐱. Note that

vol((0, 𝑟)) ≥
(

2𝑟

√

𝑛)

𝑛

.

15

𝑥1𝑥2

𝑥3

Figure 9: The first and second successive minima in the lattice generated by (1, 0) and (0, 3). Knowing that
𝜆1 = ||𝐱1||, we can ask whether 𝜆2 = ||𝐱2||, 𝜆2 = 2𝜆1 or 𝜆2 = ||𝐱3||. By the definition, 𝜆2 = ||𝐱3||.

since this 𝑛-dimensional ball contains an 𝑛-dimensional cube of length 2𝑟
√

𝑛
. From Minkowski’s convex

body theorem and the fact that the ball is open and hence contains no non-zero lattice points, we get

(

2𝜆1
√

𝑛)

𝑛

≤ vol((0, 𝜆1)) ≤ 2
𝑛
det().

Rearranging,
𝜆1() ≤

√

𝑛 ⋅ det()1/𝑛.

Successive Minima. Given a lattice, it is natural to ask for a second shortest vector in the lattice and in
general, the 𝑖th shortest vector in the lattice?

Definition 16 (Successive Minima). Let  be an arbitrary lattice of rank 𝑛. Then ∀𝑖, 1 ≤ 𝑖 ≤ 𝑛:

𝜆𝑖 ≝ inf{𝑟 ∶ (0, 𝑟) contains ≥ 𝑖 linearly independent lattice vectors}

Following the above the definition and the lattice described in Figure-9, we can see that 𝜆1 = ||𝐱1|| and
𝜆2 = ||𝐱3||, since neither 𝐱2 nor 2𝐱1 are linearly independent of 𝐱1.

We saw that Minkowski’s first theorem gives us an upper bound on 𝜆1. In fact, his second theorem
strengthens the results by considering a geometric mean of 𝜆1, 𝜆2, … , 𝜆𝑛. For a proof, we refer the reader
to Oded Regev’s lecture notes.

Theorem 17 (Minkowski’s Second Theorem). For all full rank lattices ,

(

𝑛

∏

𝑖=1

𝜆𝑖

)

1/𝑛

≤

√

𝑛 ⋅ (det())1/𝑛.

16

6 Computational Problems

Now that we are comfortable with basic mathematical theorems related to lattices, we will move on to
defining computational problems on lattices. In particular, we will consider several variants of the Shortest
Vector Problem (SVP), the Closest Vector Problem (CVP) and the Shortest Independent Vectors Problem
(SIVP) and show relations among them.

6.1 “Hard” Lattice Problems

Recall that 𝜆𝑖 = 𝜆𝑖((𝐁)) denotes the 𝑖-th successive minimum of the lattice (𝐁) and that dist(𝐭,(𝐁)) ∶=
min

𝐮∈(𝐁) ‖𝐮 − 𝐭‖. We will always talk about full rank lattices and the Euclidean (𝓁2) norm, unless otherwise
noted. Most of our discussion generalizes readily to the more general cases.

Shortest Vector Problem (SVP) The shortest vector problem (SVP) is simply to find the shortest non-
zero vector in a lattice (𝐁) given the basis 𝐁 ∈ ℤ

𝑛×𝑛. More precisely, given 𝐁 ∈ ℤ
𝑛×𝑛, one has to find a

vector 𝐮 ∈ (𝐁) such that ‖𝐮‖ = 𝜆1. We will also define the (successively easier) optimization and decision
versions of SVP. The optimization version asks to find 𝜆1((𝐁)) given 𝐁. In the decision version, one is
given 𝐁 and a number 𝑑 ∈ ℝ and is asked to decide if 𝜆1((𝐁)) ≤ 𝑑.

Of great interest to us are the approximate versions of these problems. In words, the 𝛾 -approximate
shortest vector problem SVP𝛾 asks to find a vector 𝐯 ∈ (𝐁) such that ‖𝐯‖ ≤ 𝛾 ⋅ 𝜆1((𝐁)). Its decisional
version gapSVP

𝛾
(for 𝛾 ≥ 1) asks to distinguish whether a given lattice basis 𝐁 generates a lattice (𝐁)

with 𝜆1() ≤ 1 or 𝜆1() > 𝛾 .

Closest Vector Problem (CVP) The closest vector problem (CVP) is to find the closest vector in a lattice
(𝐁) to a given target point 𝐭 ∈ ℝ

𝑛, given the basis 𝐁 ∈ ℤ
𝑛×𝑛 and the target 𝐭.

Shortest Independent Vectors Problems (SIVP) given a lattice basis𝐁, find 𝑛 independent and “short”
vectors. That is, find vectors 𝐯1, … , 𝐯𝑛 where ||𝐯𝑖|| ≤ 𝜆𝑛. Note that the problem does not ask for vectors of
length 𝜆1, … , 𝜆𝑛.

6.2 Complexity Landscape

We present the landscape for the Shortest Vector Problem. The landscape for CVP and SIVP are very
similar. In the following we assume we are given a lattice basis in ℤ

𝑛. The runtimes of the described
algorithms will be a function of 𝑛, and we ignore polynomial factors in the length of the bit representation
of the given basis.

Algorithms for SVP𝛾 : The first algorithm to solve the SVP𝛾 was the LLL algorithm. It gave a 2
𝑂(𝑛)-

approximation and its running time is poly(𝑛). The best known approximation factor achieved by a

polynomial time algorithm is 2𝑂(

𝑛 log log 𝑛

log 𝑛).
If we want to solve the exact SVP (i.e., 𝛾 = 1), then the LLL algorithm can do so with running time of
2
𝑂(𝑛

2
). The fastest known algorithm to solve the exact SVP was given by Aggarwal, Dadush, Regev

and Stephens-Davidowitz in 2015, and its running time is 2𝑛+𝑜(𝑛). There are also heuristic algorithms
with runtime 2

0.292𝑛.
Finally, one can have a trade off between the approximation factor and the running time — achieving
2
𝑘-approximation can be done in 2

𝑂̃(𝑛/𝑘) time.

17

𝛾

run time
poly(𝑛)

1

2
(log 𝑛)

1−𝜀

𝐍𝐏-hard

𝐍𝐏 ∩ coNP
√

𝑛

𝑛

Crypto
2
𝑂
(

𝑛 log log 𝑛

log 𝑛)

ALG
LLL2

𝑂(𝑛)

2
𝑘

2
𝑂̃(𝑛/𝑘)

Heuristic

2
0.292𝑛

[?]

2
𝑛

LLL

2
𝑂(𝑛

2
)

Figure 10: The complexity landscape of SVP𝛾 .

Hardness of SVP𝛾 : It is no surprise that we don’t know of a polynomial time algorithm to solve the exact
SVP, since it was shown to be 𝐍𝐏-hard. In fact, even achieving 2

(log 𝑛)
1−𝜀 -approximation is 𝐍𝐏-hard.

On the other hand, it was shown that SVP√
𝑛

is in 𝐍𝐏 ∩ coNP, and thus unlikely to be 𝐍𝐏-hard.

Cryptography from SVP𝛾 : The smallest approximation factor from which we know how to build crypto-
graphic primitives is 𝛾 = 𝑛. Since SVP√

𝑛
∈ 𝐍𝐏∩coNP, this will likely not suffice to base cryptography

on 𝐍𝐏-hardness.

A pictorial presentation of the above description if given in Figuire 10.

7 The LLL Algorithm

We describe the classic Lenstra-Lenstra-Lovász (henceforth called LLL) algorithm, a polynomial-time al-
gorithm for computing a 2

𝑂(𝑛)-approximation of the shortest lattice vector. We will then show several
applications of the LLL algorithm such as computing the shortest vector exactly in time 2

𝑂(𝑛
2
); Babai’s

algorithms that use LLL to come up with a 2
𝑂(𝑛)-approximation for the closest vector problem; an outline

of Lenstra’s integer programming algorithm; as well as applications in cryptanalysis.

7.1 The Algorithm

For a basis 𝐁, let 𝑊𝐁 denote the length of the bit representation of 𝐁.

Theorem 18. Given a basis 𝐁 ∈ ℤ
𝑛×𝑛 there is a poly(𝑛,𝑊𝐁)-time algorithm for SVP

2
𝑂(𝑛) , where 𝑊𝐁 is

the length of the bit representation of 𝐁; namely, the algorithm returns a vector 𝐯 ∈ (𝐁) such that ‖𝐯‖ ≤
2
𝑂(𝑛)

⋅ 𝜆1(𝐁).

The LLL algorithm actually transforms, in polynomial time, the given basis into a “LLL-reduced” basis
for the same lattice. The above theorem holds since an LLL-reduced basis has an important property,
namely, its shortest vector is a 2

𝑂(𝑛)-approximation for the shortest vector in the entire lattice. We first
define an LLL-reduced basis and give some intuition for this definition. Subsequently, we will describe and
analyze the LLL algorithm which finds an LLL-reduced basis in time polynomial in the input size.

18

𝐛1

𝐛2𝐛
′

2
̃
𝐛2

𝐛
′

1
/2−𝐛

′

1
/2

>60

Figure 11: The LLL-reduced basis of [𝐛1 = (2, 0), 𝐛2 = (3, 2)] is [𝐛′
1
= (2, 0), 𝐛

′

2
= (1, 2)].

7.2 LLL-reduced Basis

Our goal is to transform the given basis to one with “short” vectors. Consider the case 𝑛 = 2, i.e., 𝐁 =

[𝐛1, 𝐛2]. Our starting point is the Gram-Schmidt orthogonalization process in which we set ̃
𝐛1 ∶= 𝐛1 and

̃
𝐛2 ∶= 𝐛2 − 𝜇2,1

̃
𝐛1, where 𝜇2,1 = ⟨𝐛2,

̃
𝐛1⟩/⟨

̃
𝐛1,

̃
𝐛1⟩.

Intuitively, ̃
𝐛2 is the shortest vector we can hope for (outside the span of 𝐛1) since we removed all

̃
𝐛1’s components from it; this fact is what makes the Gram-Schmidt orthogonal. However, ̃𝐛2 ∉ (𝐁), and
thus cannot be in a basis of (𝐁). To fix this issue, we transform 𝐁 into the following basis: 𝐛′

1
= 𝐛1 and

𝐛
′

2
= 𝐛2 − ⌊𝜇2,1⌉ 𝐛

′

1
, where ⌊⋅⌉ means rounding to the closest integer. 𝐛

′

2
is the shortest lattice vector we

can hope for, as we removed all the integer components of 𝐛1. Note that the projection of 𝐛′
2

to the line
generated by 𝐛

′

1
is between −𝐛

′

1
/2 to 𝐛

′

1
/2. See Figure 11 for an example of this transformation.

So far we reduced 𝐛2, but left 𝐛1 as is. But what if 𝐛1 was very long to begin with? There is no guarantee
that the reduced basis is short. At this point we adopt an idea from Euclid’s greatest common divisor (gcd)
algorithm: we reduce 𝐛2 with respect to 𝐛1 as much as we can, then swap the roles of 𝐛1 and 𝐛2 and repeat
the process. The process will stop when the basis meets the following conditions, which form the definition
of an LLL-reduced basis in two dimensions.

Definition 19 (LLL-reduced basis in two dimensions). A basis 𝐁 = [𝐛1, 𝐛2] is LLL-reduced if

1. |𝜇2,1| ≤ 1/2.

2. ‖𝐛2‖ ≥ ‖𝐛1‖.

Note that the second condition can be written as
‖
‖
‖

̃
𝐛2

‖
‖
‖

2

≥ (1 − 𝜇
2

21
)
‖
‖
‖

̃
𝐛1

‖
‖
‖

2

.

This condition also guarantees that the resulting basis is “close” to orthogonal, in particular, that the angle
between 𝐛1 and 𝐛2 is at least 60 degrees.
Generalizing this to 𝑛 dimensions, we get the following definition.

19

Definition 20 (𝛿-LLL-reduced basis). Let 𝛿 ∈ (1/4, 1). A basis 𝐁 = [𝐛1, … , 𝐛𝑛] is 𝛿-LLL-reduced if

1. size-reduced. |
|
𝜇𝑖,𝑗

|
|
≤ 1/2 for every 𝑖 > 𝑗 .

2. Lovász criterion. ‖‖
‖

̃
𝐛𝑖+1

‖
‖
‖

2

≥ (𝛿 − 𝜇
2

𝑖+𝑖,𝑖
)
‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

2

for every 1 ≤ 𝑖 ≤ 𝑛 − 1.

Note that the projection of a (partial) LLL-reduced basis [𝐛1, … , 𝐛𝑖−1, 𝐛𝑖, 𝐛𝑖+1] to Span(̃𝐛𝑖, … ,
̃
𝐛𝑛) is

[0, … , 0,
̃
𝐛𝑖, 𝐛𝑖+1 + 𝜇𝑖+1,𝑖

̃
𝐛𝑖] .

The last two vectors meet the definition of LLL-reduced basis in two dimensions.
To get some intuition for this definition, we look at the 2D variant above where we said that ‖𝐛2‖ ≥ ‖𝐛1‖

or equivalently
‖
‖
‖

̃
𝐛2

‖
‖
‖

2

≥ (1 − 𝜇
2

2,1
)
‖
‖
‖

̃
𝐛1

‖
‖
‖

2

.

We are slightly changing this by adding 𝛿 as a parameter. Geometrically, the criterion looks at the projec-
tion of vectors 𝐛1, 𝐛2⋯𝐛𝑛 on to the Gram-Schmidt vectors ̃

𝐛𝑖, … ,
̃
𝐛𝑛. The first few vectors 𝐛1⋯𝐛𝑖−1 project

to 0, 𝐛𝑖 becomes ̃
𝐛𝑖 and 𝐛𝑖+1 projects to ̃

𝐛𝑖+1 + 𝜇𝑖+1,𝑖
̃
𝐛𝑖. So the Lovász criterion compares the norms of these

two projected vectors and says that the second one is not much shorter than the first one, like the 2d case.
It is interesting to note that this condition is extremely local and it can be extended to looking at 𝑘

vectors at a time to give a 2𝑘 time, 2𝑛/𝑘 approximation to SVP (although we will not describe this extension
here). We want to argue that finding an LLL-reduced basis is enough to get an approximate shortest vector.
Lemma 21. Let 1/4 < 𝛿 < 1. If 𝐁 is a 𝛿-LLL reduced basis, then

‖𝐛1‖ ≤
(

2

√

4𝛿 − 1)

𝑛−1

⋅ 𝜆1

Proof. By the Lovász condition, we know that
‖
‖
‖

̃
𝐛𝑖+1

‖
‖
‖

2

≥ (𝛿 − 𝜇
2

𝑖+1,𝑖
)
‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

2

Now, we use the fact that the basis 𝐁 is size-reduced, that is |𝜇𝑖+1,𝑖| ≤ 1

2
, to get

‖
‖
‖

̃
𝐛𝑖+1

‖
‖
‖
≥

√

4𝛿 − 1

2

⋅
‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

Thus, we have

‖
‖
‖

̃
𝐛𝑛

‖
‖
‖
≥

√

4𝛿 − 1

2

⋅
‖
‖
‖

̃
𝐛𝑛−1

‖
‖
‖
≥ … ≥

(

√

4𝛿 − 1

2)

𝑛−1

⋅
‖
‖
‖

̃
𝐛1

‖
‖
‖
=
(

√

4𝛿 − 1

2)

𝑛−1

⋅ ‖𝐛1‖

From this, together with the fact that 𝜆1 ≥ min𝑖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖
, we infer that

‖𝐛1‖ ≤
(

2

√

4𝛿 − 1)

𝑛−1

⋅ min
𝑖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖
≤
(

2

√

4𝛿 − 1)

𝑛−1

⋅ 𝜆1

So, in any LLL-reduced basis, the first vector is a “good” approximation to the shortest vector. It is inter-
esting to note that the LLL algorithm gives us quite a bit more. Indeed, we can use the fact that the 𝑖-th
largest element of the set

{
‖
‖
‖

̃
𝐛𝑗

‖
‖
‖

}

𝑗

gives us a lower bound on 𝜆𝑖 to get a comparable approximation on 𝜆𝑖

for all 𝑖.

20

7.3 Finding an LLL-reduced basis

Lemma 21 reduces the problem of getting a 2
𝑂(𝑛) approximation to SVP to finding an LLL-reduced basis.

In this section we describe the LLL algorithm to find a reduced basis and analyze it.

Input Basis 𝐛1, 𝐛2⋯𝐛𝑛

while
1 Compute ̃

𝐛1,
̃
𝐛2⋯

̃
𝐛𝑛

2 for 𝑖 = 2 to 𝑛 // Reduction Step
for 𝑗 = 𝑖 − 1 to 1

𝐛𝑖 ← 𝐛𝑖 − 𝑐𝑖,𝑗𝐛𝑗 where 𝑐𝑖,𝑗 = ⌊𝜇𝑖,𝑗⌉

3 if ∃ 𝑖 such that ‖‖
‖

̃
𝐛𝑖+1

‖
‖
‖
<

√

𝛿 − 𝜇
2

𝑖+1,𝑖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖
// Swap stepa

Swap 𝐛𝑖 and 𝐛𝑖+1

else
Output 𝐛1, 𝐛2⋯𝐛𝑛

aWe do not recompute the ̃
𝐛𝑖’s again because the Reduction step does not affect ̃𝐛𝑖’s.

Figure 12: The LLL algorithm

The LLL-algorithm is an iterative algorithm where in each iteration, we first replace the vectors 𝐛𝑖’s
by “approximately” orthogonal vectors in the lattice obtained from the vectors ̃

𝐛𝑖’s. After this, we check
if the Lovász criterion is violated for any pair of vectors 𝐛𝑖, 𝐛𝑖+1. In case of a violation, we swap the two
vectors and continue.

Correctness. To prove correctness, we need to show that, if the algorithm terminates, then the output
basis is LLL-reduced.

In order to show that |
|
𝜇𝑖,𝑗

|
|
≤

1

2
, consider the last iteration. It will not do any swaps and hence the

vectors ̃
𝐛𝑖’s will remain unchanged in the iteration. On the other hand, because we subtract 𝑐𝑖,𝑗 ’s, the

values of 𝜇𝑖,𝑗 ’s changes. Namely 𝜇
𝑛𝑒𝑤

𝑖,𝑗
= 𝜇

𝑜𝑙𝑑

𝑖,𝑗
− ⌊𝜇

𝑜𝑙𝑑

𝑖,𝑗 ⌉ and hence |
|
|
𝜇
𝑛𝑒𝑤

𝑖,𝑗

|
|
|
≤ 1/2. Note that this relies on the

fact that we are decrementing 𝑗 in step 2 of the algorithm. The Lovász criterion is satisfied by termination
– if it was not satisfied for some 𝑖, then we would swap 𝐛𝑖 and 𝐛𝑖+1 and iterate again.

Number of Iterations The termination is a potential argument. We define a non-negative potential
function 𝜙(𝐁) for any basis and then show that it was not too large to begin with and that each iteration
reduces this function by a constant.

Let 𝜙(𝐁) = ∏
𝑖
𝜙𝑖(𝐁) where

𝜙𝑖(𝐁) = |det((𝐛1, 𝐛2⋯𝐛𝑖))|

Where the determinant for non full rank matrices is defined as det(𝐁) = det(

√

𝐁
⊤
𝐁). Another way to

write it would be
𝜙𝑖(𝐁) =

‖
‖
‖

̃
𝐛1

‖
‖
‖
⋅
‖
‖
‖

̃
𝐛2

‖
‖
‖
⋯
‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

21

Lemma 22. 𝜙(𝐁) is not too large to begin with

𝜙(𝐁𝑖𝑛𝑖𝑡) ≤

𝑛

∏

𝑖=1

‖𝐛1‖ ⋅ ‖𝐛2‖ ⋯ ‖𝐛𝑖‖ ≤ max
𝑖

(‖𝐛𝑖‖)
𝑂(𝑛

2
)

So, log(𝜙(𝐁𝑖𝑛𝑖𝑡)) = poly(𝑛,𝑊) where 𝑊 is the bit length of the vectors. We also know that 𝜙(𝐁) ≥ 1

because of the fact that we are dealing with integer lattices and each potential 𝜙𝑖 can be interpreted as the
𝑖-dimensional volume enclosed by the vectors 𝐛1, 𝐛2⋯𝐛𝑖.

Lemma 23. The reduction step does not change the potential function

This is evident by looking at 𝜙𝑖(𝐁) =
‖
‖
‖

̃
𝐛1

‖
‖
‖

‖
‖
‖

̃
𝐛2

‖
‖
‖
⋯
‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

and observing that the reduction step leaves ̃
𝐛𝑖’s

invariant.

Lemma 24. The swap step reduces 𝜙 by a constant factor.

Proof. Let us say that 𝐛𝑖 and 𝐛𝑖+1 were swapped. This only affects the value of 𝜙𝑖(𝐁) because changing
order of vectors does not affect the determinant.

The old value of 𝜙𝑖 is, 𝜙𝑜𝑙𝑑

𝑖
=
‖
‖
‖

̃
𝐛
1

‖
‖
‖
⋅
‖
‖
‖

̃
𝐛
2

‖
‖
‖
⋯
‖
‖
‖

̃
𝐛
𝑖

‖
‖
‖
while the new value is 𝜙𝑛𝑒𝑤

𝑖
=
‖
‖
‖

̃
𝐛
𝑛𝑒𝑤

1

‖
‖
‖
⋅
‖
‖
‖

̃
𝐛
𝑛𝑒𝑤

2

‖
‖
‖
⋯
‖
‖
‖

̃
𝐛
𝑛𝑒𝑤

𝑖−1

‖
‖
‖
⋅
‖
‖
‖

̃
𝐛
𝑛𝑒𝑤

𝑖+1

‖
‖
‖
.

We see that (a) 𝐛𝑛𝑒𝑤
𝑗

= 𝐛𝑗 for 𝑗 < 𝑖 and (b) the component of 𝐛𝑖+1 orthogonal to the span of 𝐛1, 𝐛2⋯𝐛𝑖−1 is
̃
𝐛𝑖+1 + 𝜇𝑖+1,𝑖

̃
𝐛𝑖. So,

𝜙
𝑛𝑒𝑤

𝜙
𝑜𝑙𝑑

=

𝜙
𝑛𝑒𝑤

𝑖

𝜙
𝑜𝑙𝑑

𝑖

=

‖
‖
‖

̃
𝐛𝑖+1 + 𝜇𝑖+1,𝑖

̃
𝐛𝑖

‖
‖
‖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

<

√

𝛿

So as long as 𝛿 < 1 is a fixed constant, we know that the potential function decreases by a constant
factor.

8 Applications of LLL

The LLL algorithm has numerous applications all through the fields of optimization, algorithm design,
number theory and cryptography. The most famous, and perhaps the first, use of the LLL algorithm was
to design a polynomial-time algorithm for factoring polynomials over the rationals [?]. LLL also gives us
an algorithm for finding the exact shortest vector. While the algorithm takes exponential time, it was the
first algorithm to solve exact SVP for a fixed dimension. There are many other applications including Cop-
persmith’s method for finding small roots of polynomials over the integers with its ensuing applications
to cryptanalysis, algorithms for integer programming, and approximate closest vector algorithms.

8.1 Computing the Shortest Vector in 2
𝑂(𝑛

2
) Time

An immediate application of the LLL algorithm is a method of solving the shortest and closest vector
problems exactly in 𝑛 dimensions in time 2

𝑂(𝑛
2
)
⋅ poly(||𝐁||). We describe this method below, but first let us

start with a neat property of LLL-reduced bases. This property says that the coefficients of any shortest
vector 𝐯 ∈ (𝐁) relative to an LLL-reduced basis 𝐁 are not too large.

Lemma 25. Let 𝐁 = [𝐛1 𝐛2 … 𝐛𝑛] be an LLL-reduced basis and let 𝐯 = ∑
𝑛

𝑖=1
𝑐𝑖𝐛𝑖 be any shortest vector in

the lattice (𝐁). Then, for all 𝑖, |𝑐𝑖| = 2
𝑂(𝑛).

22

Proof. Let 𝐁̃ =
̃
𝐛1,

̃
𝐛2, … ,

̃
𝐛𝑛 denote the Gram-Schmidt orthogonalization of 𝐁. Write the shortest vector 𝐯

in the terms of the GS basis as 𝐯 = ∑
𝑖
𝑐𝑖𝐛𝑖 = ∑

𝑖
𝑐̃𝑖
̃
𝐛𝑖.

We look at the last 𝑖 such that 𝑐𝑖 is non-zero. Then 𝑐𝑖 = 𝑐̃𝑖 because it is the only coefficient contributing
in the ̃

𝐛𝑖 direction. Since ‖𝐛1‖ ≥ ‖𝐯‖ ≥ 𝑐𝑖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖
, we get that

𝑐𝑖 ≤

‖𝐛1‖

‖
‖
‖

̃
𝐛𝑖

‖
‖
‖

≤
(

2

√

4𝛿 − 1)

𝑖−1

by Lemma 21.

Given Lemma 25, a 2𝑂(𝑛
2
)-time algorithm is immediate. Simply iterate over all 𝑐𝑖 ∈ [−2

𝑂(𝑛)
, 2

𝑂(𝑛)
], compute

∑
𝑛

𝑖=1
𝑐𝑖𝐛𝑖 and output the shortest one among them.

8.2 2
𝑂(𝑛)-approximate CVP in Polynomial Time

In this section, we present two algorithms to compute the approximately closest vector in a lattice. Both
are due to Babai and both run in polynomial time. We will simply describe the first of these, called the
“Rounding algorithm”, without a detailed analysis. But we will analyze in detail the second, called the
“Nearest Plane algorithm”.

Babai’s Rounding Algorithm. Given an LLL-reduced basis 𝐁 and a target vector 𝐭 ∈ ℤ
𝑛, output 𝐁 ⋅

⌊𝐁
−1
𝐭⌉ as the closest vector.

In words, first express the target vector 𝐭 in terms of the basis 𝐁. The resulting coefficients are not neces-
sarily integers (if they were, 𝐭 would already be in the lattice and we would be done), but one can of course
round them to the nearest integers. This gives us the coefficients of the candidate closest lattice vector.

Lemma 26. Let 𝐲 = Closest𝐁(𝐭) be the closest lattice vector to 𝐭. Then, Babai’s rounding algorithm outputs a
vector 𝐳 ∈ (𝐁) such that ||𝐭 − 𝐳|| ≤ 𝐶𝑛 ⋅ ||𝐭 − 𝐲|| where 𝐶𝑛 ≤ 1 + 2𝑛 ⋅ (9/2)

𝑛/2.

23

Exercises

1. Consider the basis
𝐁 =

(

123 1

6764 55)

• Which of the following vectors belong to the lattice (𝐁)?

𝐯1 =
(

129

143)
, 𝐯2 =

(

1/2

10)
and 𝐯3 =

(

1

0)

• What is the determinant of (𝐁)?
• Find the Gram-Schmidt orthogonalization of 𝐁.
• Find the shortest vector in (𝐁) (note that there may be many).
• Find a shortest basis of (𝐁) (note that there may be many).

2. Let 𝐞1, … , 𝐞𝑛 be the 𝑛-dimensional unit vectors. Show that for every 𝑛-dimensional integer lattice 
(namely,  ⊆ ℤ

𝑛), the vectors det(𝐿) ⋅ 𝐞𝑖 ∈ .

3. Given a basis 𝐁, check if (𝐁) is a cyclic lattice, where a lattice  is called cyclic if for every lattice
vector 𝐱 ∈ , any cyclic rotation of the coordinates of 𝐱 is also in . For example, the lattice
(𝐛1, 𝐛2, 𝐛3) where 𝐛1 = (2, 0, 0)

𝑇 , 𝐛2 = (0, 2, 0)
𝑇 and 𝐛3 = (1, 1, 1)

𝑇 is cyclic.

4. Describe a procedure that given any set of vectors 𝐛1, … , 𝐛𝑛 ∈ ℤ
𝑚, find a basis for the lattice

(𝐛1, … , 𝐛𝑛) (notice that these vectors are not necessarily linearly independent and that in particular,
𝑛 might be greater than 𝑚). There is no need to analyze the running time. A corollary is that any set
of vectors in ℤ

𝑚 spans a lattice.

5. Let  be a lattice. Recall that Minkowski’s Convex Body Theorem states that any convex, centrally
symmetric 𝑛-dimensional body 𝑆 with vol(𝑆) > 2𝑛 ⋅ det() contains a non-zero lattice point. Show
that all the three conditions – convexity, central symmetry and the lower-bound on the volume –
are necessary for this theorem to be true. Namely, for the lattice  = ℤ

𝑛, show:

• a convex set 𝑆1 with vol(𝑆1) > 2𝑛 ⋅ det() that does not contain a lattice point. Note that 𝑆1 has
to be necessarily centrally asymmetric.

• a centrally symmetric set 𝑆2 with vol(𝑆2) > 2𝑛 ⋅ det() that does not contain a lattice point.
Note that 𝑆2 has to be necessarily non-convex.

• a convex, centrally symmetric set 𝑆3 with vol(𝑆3) = 2𝑛 ⋅det() that does not contain a non-zero
lattice point.

6. Despite lattices with much shorter vectors than predicted, Minkowski’s theorem is tight for general
lattices. In particular, there is a family of lattices {𝑛}𝑛∈ℕ where 𝑛 lives in 𝑛 dimensions, and

𝜆1(𝑛) ≥ 𝑐 ⋅

√

𝑛 ⋅ det(𝑛)
1/𝑛

where 𝑐 is a universal constant independent of 𝑛.
Show that such a family of lattices exists (your proof doesn’t have to construct this family, you
merely have to show existence).

7. (**) Same as the previous problem except show an explicit construction of such a family of lattices
{𝑛}𝑛∈ℕ.

24

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Figure 13: Applying Dirichlet’s theorem to approximate 0.846153846 for 𝑄 = 3, we can see that there
exists (𝑝, 𝑞) satisfying the requirements. For example, (𝑝, 𝑞) = (1, 1), since 1 ≤ 3 and |0.846153846 − 1| =

0.153846154 ≤
1

1∗3
.

A Applications of Minkowski’s Theorem

Minkowski’s Theorem is widely used in computer and mathematical sciences. For example, we now can
prove the following theorems:

• Dirichlet’s theorem on Diophantine approximation. This theorem allows us to approximate real
numbers with rationals (See Figure-13 for an example).

• Lagrange’s four-square theorem. Intuitively, the theorem states that we can express every positive
integer as the sum of four squares of integers.

Theorem 27 (Dirichlet’s Theorem on Diophantine Approximation). For all 𝜆 ∈ ℝ and all 𝑄 ∈ ℕ, there
exists 𝑝, 𝑞 such that

𝑞 < 𝑄 and |𝜆 −

𝑝

𝑞

| ≤

1

𝑞𝑄

.

Proof. Consider the lattice  =. Let 𝑆 = {(𝑥, 𝑦) ∶ −𝑄 ≤ 𝑥 ≤ 𝑄, −
1

𝑄
≤ 𝜆𝑥 − 𝑦 ≤

1

𝑄
}.

Now, 𝑣𝑜𝑙(𝑆) = base*height= 2

𝑄
∗ 2𝑄 = 4. Therefore, 𝑣𝑜𝑙(𝑆) ≥ 2

2
𝑑𝑒𝑡().

Applying Minkowski’s first theorem, we know that there exists (𝑞, 𝑝) ∈ such that,

−𝑄 ≤ 𝑞 ≤ 𝑄 and −

1

𝑄

≤ 𝜆𝑞 − 𝑝 ≤

1

𝑄

.

Therefore, |𝜆𝑞 − 𝑝| ≤
1

𝑄
, which implies |𝜆 −

𝑝

𝑞
| ≤

1

𝑞𝑄
.

25

	Lattices
	Same Lattice, Many Bases
	An Algebraic Characterization using Unimodular Matrices
	A Geometric Characterization using the Fundamental Parallelepiped
	Determinant of a Lattice

	Gram-Schmidt Orthogonalization
	Successive Minima of a Lattice
	Minkowski's Theorems
	Computational Problems
	``Hard'' Lattice Problems
	Complexity Landscape

	The LLL Algorithm
	The Algorithm
	LLL-reduced Basis
	Finding an LLL-reduced basis

	Applications of LLL
	Computing the Shortest Vector in 2O(n2) Time
	2O(n)-approximate CVP in Polynomial Time

	Applications of Minkowski's Theorem

