
Worst-case to Average-case Reductions
In this lecture, we will see a few basic theorems on lattices and a property called smoothing. We will

then use smoothing as a tool to come up with worst-case to average-case reductions for SIS and LWE. In
a nutshell, the worst-case to average-case reductions show how to transform any algorithm that solves
SIS/LWE on the average into an algorithm that solves “approximate short vector problems” on lattices in
the worst case.

1 Lattice Smoothing

1.1 Lattice Duality

For a rank-𝑛 lattice , its dual denoted ∗ is defined as

∗
= {𝐱 ∈ ℝ

𝑛
∶ ∀𝐲 ∈ , ⟨𝐱, 𝐲⟩ ∈ ℤ}

Indeed, each dual lattice vector 𝐱 corresponds to a linear function 𝜙𝐱 ∶  → ℤ and the dual lattice
corresponds to a basis of the space of such linear functions.

Let us start with examples and some properties.

• In one dimension, the only possible lattices are 𝑘ℤ. Its dual is (1/𝑘) ⋅ ℤ.

• The dual of ℤ𝑛 is ℤ𝑛 itself.

• If  = (𝐁) for a basis matrix 𝐁 ∈ ℝ𝑛×𝑛, then ∗ is generated by the columns of 𝐁−𝑇 , its transposed
inverse. Indeed, the pairwise inner products of the basis vectors and the dual basis vectors is captured
in the matrix 𝐁 ⋅ (𝐁−𝑇)𝑇 = 𝐈.

The determinant of the dual lattice is immediately seen to be the inverse of the determinant of the
lattice. In an intuitive sense, as the lattice gets sparser (the determinant gets larger), the dual lattice gets
denser (its determinant gets smaller). This leads us to the following lemma.
Lemma 1. For any rank-𝑛 lattice , 𝜆1(∗) ⋅ 𝜆1() ≤ 𝑛.

Proof. We know from Minkowski that

𝜆1() ≤
√
𝑛(det())1/𝑛 and 𝜆1(∗

) ≤
√
𝑛(det(∗

))
1/𝑛

Multiplying the two, we get
𝜆1() ⋅ 𝜆1(∗

) ≤ 𝑛

as desired.

In fact, using far more advanced tools, we can show something stronger, namely that 𝜆1(∗)⋅𝜆𝑛() ≤ 𝑛.
The following lemma goes in the other direction, has an elementary proof, and we will find it useful later
on.
Lemma 2. For any rank-𝑛 lattice , 𝜆𝑛(∗) ⋅ 𝜆1() ≥ 1.

Proof. Let 𝐱 ∈  be the shortest non-zero vector. Let 𝐯1, … , 𝐯𝑛 ∈ ∗ be linearly independent. At least one
of the 𝐯𝑖 has a non-zero inner product with 𝐱, say ⟨𝐯𝑖, 𝐱⟩ > 0. Since the inner products of lattice vectors
and dual vectors are integers, ⟨𝐯𝑖, 𝐱⟩ ≥ 1. Therefore,

𝜆1() = ||𝐱|| ≥ 1/||𝐯𝑖|| ≥ 1/𝜆𝑛(∗
) .

1

1.2 Gaussians

The Gaussian function over ℝ with (zero mean and) parameter 𝑠 is defined as

𝜌𝑠(𝑥) = 𝑒
−𝜋𝑥2/𝑠2

We note that

∫

∞

−∞

𝜌𝑠(𝑥)𝑑𝑥 = ∫

∞

−∞

𝑒
−𝜋𝑥2/𝑠2

𝑑𝑥 =
𝑠
√
𝜋 ∫

∞

−∞

𝑒
−𝑧2

𝑑𝑧 = 𝑠

where the second equality is by a change of variables and the third by using value of the Gaussian integral
(= √

𝜋). This fact can be used to turn the Gaussian function into a probability distribution over the reals
by scaling 𝜌𝑠 by 1/𝑠.

Something very similar can be done in 𝑛 dimensions. That is, the 𝑛-dimensional Gaussian function
over ℝ𝑛 is defined as

𝜌𝑠(𝐱) = 𝑒
−𝜋||𝐱||2/𝑠2

This can again be turned into a probability distribution after scaling by 1/𝑠𝑛.

1.3 Basic Fourier Analysis

We call a function 𝑓 ∶ ℝ𝑛 → ℂ “nice” if it is absolutely integrable, that is, ∫
ℝ𝑛 |𝑓 (𝐱)|𝑑𝐱 < ∞.

Definition 3 (Fourier Transform). For a nice function 𝑓 ∶ ℝ𝑛 → ℂ, we define its Fourier transform ̂𝑓 ∶

ℝ𝑛 → ℂ as
̂𝑓 (𝐲) = ∫

ℝ𝑛

𝑓 (𝐱)𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

If 𝑓 , ̂𝑓 are nice and 𝑓 is continuous, we can recover a function from its Fourier transform using the
inverse formula:

𝑓 (𝐱) = ∫
ℝ𝑛

𝑓 (𝐲)𝑒
2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

Lemma 4 (Fourier Transform of the Gaussian function). Let 𝜌̂𝑠 denote the Fourier transform of the Gaussian
function 𝜌𝑠 . Then,

𝜌̂𝑠(𝐱) = 𝑠
𝑛
⋅ 𝜌1/𝑠(𝐱)

Proof. We provide a proof in one dimension.

𝜌̂𝑠(𝐲) = ∫
ℝ𝑛

𝜌𝑠(𝐱)𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

= ∫
ℝ𝑛

𝑒
−𝜋||𝐱||2/𝑠2

𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

= 𝑒
−𝜋𝑠2 ||𝐲||2

∫
ℝ𝑛

𝑒
−𝜋||(𝐱/𝑠+𝑖𝑠𝐲)||2

𝑑𝐱

The latter integral, on a complex change of variables becomes 𝑠𝑛 ⋅ ∫
ℝ𝑛 𝑒

−𝜋||𝐳||2𝑑𝐳 which is simply 𝑠𝑛. So,

𝜌̂𝑠(𝐲) = 𝑠
𝑛
𝑒
−𝜋𝑠2 ||𝐲||2

= 𝑠
𝑛
⋅ 𝜌1/𝑠(𝐲)

2

For periodic functions, we have the closely related notion of Fourier series.

Definition 5 (Fourier Series). We will define Fourier series for periodic functions. For a “nice enough” func-
tion 𝑓 ∶ ℝ𝑛 → ℂ that is -periodic, that is, 𝑓 (𝐱 + 𝐲) = 𝑓 (𝐱) for all 𝐱 ∈ ℝ𝑛 and 𝐲 ∈ , we have its Fourier
series ̂𝑓 ∶ ∗ → ℂ defined as

̂𝑓 (𝐲) =
1

det()
⋅ ∫

()
𝑓 (𝑥)𝑒

−2𝜋𝑖⟨𝐱,𝐲⟩
𝑑𝐱

We will state the Fourier inversion formula below without proof.

Lemma 6 (Fourier Inversion). 𝑓 (𝐱) = ∑𝐲∈∗
̂𝑓 (𝐲)𝑒2𝜋𝑖⟨𝐱,𝐲⟩.

An important fact that connects a function 𝑓 and its Fourier transform is the Poisson Summation
formula. The proof of this formula goes via the Fourier series.

Lemma 7 (Poisson Summation). Given 𝑓 ∶ ℝ𝑛 → ℂ, and any full-rank lattice , we have

∑

𝐱∈
𝑓 (𝐱) =

1

det()
⋅ ∑

𝐲∈∗

̂𝑓 (𝐲) = det(∗
) ⋅ ∑

𝐲∈∗

̂𝑓 (𝐲)

Proof. Although 𝑓 is not periodic, the proof of Poisson summation goes through the Fourier series of a
“periodized” 𝑓 . In particular, consider the function

𝜙(𝐱) = ∑

𝐳∈
𝑓 (𝐱 + 𝐳)

Clearly 𝜙 is periodic over , therefore 𝜙̂ is defined over ∗. For any 𝐲 ∈ ∗, we have

𝜙̂(𝐲) = det(∗
) ∫

𝐱∈()
𝜙(𝐱)𝑒

−2𝜋𝑖⟨𝐱,𝐲⟩
𝑑𝐱

= det(∗
) ∫

𝐱∈()(
∑

𝐳∈
𝑓 (𝐱 + 𝐳)

)
𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

= det(∗
)∑

𝐳∈
∫
𝐱∈()

𝑓 (𝐱 + 𝐳)𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

= det(∗
)∑

𝐳∈
∫
𝐱∈()

𝑓 (𝐱 + 𝐳)𝑒
−2𝜋𝑖⟨𝐱+𝐳,𝐲⟩

𝑑𝐱

= det(∗
) ∫

𝐱∈ℝ𝑛

𝑓 (𝐱)𝑒
−2𝜋𝑖⟨𝐱,𝐲⟩

𝑑𝐱

= det(∗
) ̂𝑓 (𝐲)

where the first equality used the definition of the Fourier series for 𝜙, the second used the definition of
𝜙, the third used the “niceness” of 𝑓 to switch the integral and summation, the fourth used the fact that
⟨𝐲, 𝐳⟩ ∈ ℤ, and the final one used the definition of the Fourier transform of 𝑓 .

Now use Fourier inversion for 𝜙 to show that

∑

𝐱∈
𝑓 (𝐱) = 𝜙(𝟎) = ∑

𝐲∈∗

𝜙̂(𝐲) = det(∗
) ∑

𝐲∈∗

̂𝑓 (𝐲)

3

1.4 Smoothing Lemma and Proof

Let 𝜙𝑠 denote the distribution obtained by picking a vector from the (continuous) Gaussian distribution
defined by 𝜌𝑠 and reducing it modulo the parallelepiped (𝐁). Thus,

𝜙𝑠(𝐱) = 1/𝑠
𝑛
⋅ ∑

𝐲∈(𝐁)
𝜌𝑠(𝐱 + 𝐲) ∶= 1/𝑠

𝑛
⋅ 𝜌𝑠(𝐱 + (𝐁))

Now, since 𝜙𝑠 is clearly a periodic function over the lattice (𝐁), we can compute it alternatively using
the Poisson summation formula. For any 𝐱 ∈ (𝐁), we have

𝜙𝑠(𝐱) = ∑

𝐲∈∗

𝜙̂𝑠(𝐲)𝑒
2𝜋𝑖⟨𝐱,𝐲⟩

= det(∗
) ⋅ (1/𝑠

𝑛
) ∑

𝐲∈∗

𝜌̂𝑠(𝐲)𝑒
2𝜋𝑖⟨𝐱,𝐲⟩

= 𝑠
𝑛
⋅ det(∗

) ⋅ (1/𝑠
𝑛
) ∑

𝐲∈∗

𝜌1/𝑠(𝐲)𝑒
2𝜋𝑖⟨𝐱,𝐲⟩

= det(∗
) ⋅

(
1 + ∑

𝐲∈∗⧵{𝟎}

𝜌1/𝑠(𝐲) ⋅ 𝑒
2𝜋𝑖⟨𝐲,𝐱⟩

)

where the first equality is by the definition of Fourier inversion, the second by the definition of 𝜙𝑠 and
by the linearity of the Fourier transform, the third by the Fourier transform of the Gaussian function
(Lemma 4), and the final one just by grouping terms together.

We will use this formulation to compute the statistical distance of 𝜙𝑠 from the uniform distribution
over the paralellepiped whose density function is 𝑈(𝐁)(𝐱) = 1/det() = det(∗).

Δ(𝜙𝑠 , 𝑈(𝐁)) = ∫
(𝐁)

|𝜙𝑠(𝐱) − 𝑈(𝐁)(𝐱)| 𝑑𝐱

= det(∗
) ∫

(𝐁)

|
|
|
|

∑

𝐲∈∗⧵{𝟎}

𝜌1/𝑠(𝐲) ⋅ 𝑒
2𝜋𝑖⟨𝐲,𝐱⟩

|
|
|
|
𝑑𝐱

= det(∗
) ⋅ det() ⋅ max

𝐱∈(𝐁)

|
|
|
|

∑

𝐲∈∗⧵{𝟎}

𝜌1/𝑠(𝐲) ⋅ 𝑒
2𝜋𝑖⟨𝐲,𝐱⟩

|
|
|
|

≤ ∑

𝐲∈∗⧵{𝟎}

𝜌1/𝑠(𝐲) ∶= 𝜌1/𝑠(∗
⧵ {𝟎}) (1)

In other words, we established 𝜌1/𝑠(∗ ⧵ {𝟎}) as the quantity that governs the variation (or statistical)
distance between the continuous Gaussian reduced modulo (𝐁) and the uniform distribution over (𝐁).
We will now bound this quantity.

Bounding the Gaussian Weight of Non-Zero (Dual) Lattice Vectors. Let us first try to build some
intuition for why we should expect to bound the Gaussian weight 𝜌1/𝑠(∗) by something close to 1. First
of all, the heaviest vector is the zero vector that gets a weight of 1. Secondly, if 𝜆1(∗) ⪆ (1/𝑠

√
2𝜋) ⋅

𝜔(
√
log 𝑛), then the next heaviest vector has weight 𝑒−𝜔(log 𝑛) which is negligible in 𝑛. However, there

could be exponentially many vectors of that length which could make the collective contribution much
larger. We have to balance these two effects: the fact that a large 𝜆1 results in the Gaussian weight of each

4

individual non-zero lattice vector to be tiny, versus the fact that there may be exponentially many lattice
vectors of a given length.

First, let us come up with a simple upper bound on the number of lattice vectors of a given length using
a packing argument.

Lemma 8. Let  be a rank-𝑛 lattice. The number of lattice vectors of length at most 𝑟 is at most
(
1+ 2𝑟

𝜆1())

𝑛

.

Proof. Draw balls of radius 𝜆1/2 around each lattice point. These balls do not intersect. As long as the
length of each such lattice point is at most 𝑟 , these balls are all contained in the ball of radius 𝑟 + 𝜆1/2

around the origin. By a volume argument, we have

vol𝑛(𝑟 +
𝜆1

2
) ≥ 𝑁𝑟 ⋅ vol𝑛(

𝜆1

2
)

where 𝑁𝑟 is the number of lattice vectors of length at most 𝑟 . Put together, we get

𝑁𝑟 ≤
vol𝑛(𝑟 +

𝜆1
2
)

vol𝑛(
𝜆1
2
)

=
(

𝑟 +
𝜆1
2

𝜆1
2

)

𝑛

=
(
1 +

2𝑟

𝜆1())

𝑛

We now use this to bound the sum ∑𝐲∈ 𝜌𝑠(𝐲). The proof is due to Noah Stephens-Davidowitz.

Lemma 9. Let  be a rank-𝑛 lattice. ∑𝐲∈ 𝜌𝑠(𝐲) = 1+ 2−𝑂(𝑛) as long as 𝜆1 > 𝐶𝑠 ⋅
√
𝑛/2𝜋𝑒 for some absolute

constant 𝐶 ≈ 3.

Proof. Using a “Lebesgue integral trick” (mentioned in class), we have

∑

𝐲∈
𝜌𝑠(𝐲) = ∫

1

0

|
|
|
|
{𝐲 ∈  ∶ 𝜌𝑠(𝐲) ≥ 𝑡}

|
|
|
|
𝑑𝑡

= ∫

1

0

|
|
|
|
{𝐲 ∈  ∶ 𝑒

−𝜋||𝐲||2/𝑠2
≥ 𝑡}

|
|
|
|
𝑑𝑡

Now, we do a change of variables 𝑡 = 𝑒−𝜋𝑟
2/𝑠2 , we get:

=
2𝜋

𝑠2 ∫

∞

0

|
|
|
|
{𝐲 ∈  ∶ ||𝐲|| ≤ 𝑟}

|
|
|
|
𝑟𝑒

−𝜋𝑟2/𝑠2
𝑑𝑟

≤
2𝜋

𝑠2
⋅ (∫

𝜆1

0

+∫

∞

𝜆1

)
|
|
|
|
{𝐲 ∈  ∶ ||𝐲|| ≤ 𝑟}

|
|
|
|
𝑟𝑒

−𝜋𝑟2/𝑠2
𝑑𝑟

≤ (1 − 𝑒
−𝜋𝜆21/𝑠

2

) +
2𝜋

𝑠2 ∫

∞

𝜆1

|
|
|
|
{𝐲 ∈  ∶ ||𝐲|| ≤ 𝑟}

|
|
|
|
𝑟𝑒

−𝜋𝑟2/𝑠2
𝑑𝑟

≤ 1 +
2𝜋

𝑠2 ∫

∞

𝜆1
(

3𝑟

𝜆1)

𝑛

𝑟𝑒
−𝜋𝑟2/𝑠2

𝑑𝑟

≤ 1 +
2𝜋𝐶𝑛

𝑠2𝜆𝑛1
∫

∞

𝜆1

𝑟
𝑛+1

𝑒
−𝜋𝑟2/𝑠2

𝑑𝑟

5

where 𝐶 = 3. After another change of variables (𝑤 = 𝜋𝑟2/𝑠2), we can bound this by

1 +
(

𝑠𝐶

𝜆1
√
𝜋)

𝑛

Γ(𝑛/2)

where Γ(⋅) is the gamma function. Applying the bound on gamma functions, we get

1 +
(

𝑠𝐶

𝜆1

√
𝑛

2𝜋𝑒)

𝑛

As long as 𝜆1 > 𝐶𝑠 ⋅
√
𝑛/2𝜋𝑒, we get a sum that is exponentially close to 1.

Finally, applying this to our scenario, where the lattice is ∗ and the function is 𝜌1/𝑠 , we get that the
sum ∑𝐲∈∗ 𝜌1/𝑠(𝐲) is exponentially close to 1 as long as

𝑠 ≥ 𝜆𝑛() ⋅ 𝐶 ⋅

√
𝑛

2𝜋𝑒

Indeed, if 𝑠 is so large, we have 𝜆1(∗) ≥ 1/𝜆𝑛() ≥ 𝐶
𝑠
⋅
√

𝑛
2𝜋𝑒

where the first inequality is by Lemma 2.

2 Worst-case to Average-case Reduction for SIS

The reduction is due to Ajtai originally, but our presentation follows the work of Micciancio and Regev,
and borrows from Regev’s lecture notes.

We first illustrate the intuition behind the worst-case to average-case reduction by showing how to
reduce the approximate-SIVP problem to a variant of SIS over the torus 𝕋 = ℝ/ℤ, SIS𝕋. SIS𝕋 is exactly
as in SIS, except that you are given a matrix 𝐀 ∈ 𝕋𝑛×𝑚 and you are asked to find a small integer linear
combination that sums to zero. That is, find 𝐱 ∈ ℤ𝑚 such that 𝐀𝐱 = 0 and ||𝐱|| is “small”.

How would such a reduction look like? On the one hand, the reduction has to generate a uniformly
random SIS𝕋 instance from a given lattice ; therefore, the SIS instance “forgets” the lattice  that was
used to generate it. On the other hand, a solution to the SIS instance has to somehow be mapped back to
a non-trivially short vector in . This (apparent) conundrum is common to all worst-case to average-case
reductions, and the answer is that the reduction knows some information connecting the lattice to the SIS
instance which, together with the SIS solution, helps it generate short vectors in .

The reduction first generates a random vector 𝐯 ∈ (𝐁) in the parallelpiped associated to the given
basis. It does so by sampling a vector 𝐱 ← 𝜌𝑠 from the (zero-centered) Gaussian with standard deviation
parameter 𝑠 ≥ 𝜂𝜀(), the smoothing parameter for some negligible function 𝜀 = 𝜀(𝑛), and setting

𝐯 = 𝐱 (mod (𝐁))

By the smoothing lemma, 𝐯 is (close to) random over the paraellelepiped. The first column of the SIS matrix
𝐀 is then set to

𝐚 = 𝐁
−1
𝐯 ∈ 𝕋

𝑛

which is (close to) random over [0, 1)𝑛. Repeat this process independently 𝑚 times to generate the statis-
tically close to uniform SIS𝕋 matrix 𝐀 ∈ 𝕋𝑛×𝑚 where

𝐀 = 𝐁
−1
𝐕

6

https://dl.acm.org/doi/10.1145/237814.237838
https://cims.nyu.edu/~regev/papers/average.pdf
https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/

Call the Gaussian matrix corresponding to 𝐕 as 𝐗. The reduction will keep 𝐗 to itself.
Assume now that there is a SIS𝕋 algorithm that gives us a non-zero integer vector 𝐱 ∈ ℤ𝑚 such that

𝐀𝐱 ∈ ℤ𝑛. (this is what it means for 𝐀𝐱 to be 𝟎 (mod 1).) Then we know that 𝐁−1𝐕𝐱 ∈ ℤ𝑛 and therefore,
𝐕𝐱 ∈ (𝐁) is a lattice vector. Now, since 𝐗 ≡ 𝐕 (mod (𝐁)), we know that 𝐗𝐱 ∈ (𝐁) is also a lattice
vector.

We now argue that it is short. We know that ||𝐗𝐱|| ≈ 𝑠||𝐱||
√
𝑛 ≈ 𝜆𝑛

√
𝑚𝑛. Here, the first equality is

because each column of𝐗 is a continuous Gaussian with parameter 𝑠 and therefore𝐗𝐱 has parameter 𝑠||𝐱||
and therefore length 𝑠||𝐱||

√
𝑛w.h.p. The second equality is using the smoothing lemma, substituting 𝜆𝑛 for

𝑠 upto logarithmic factors and √
𝑚 as the norm of 𝐱, assuming it is a 0-1 vector.

This seems to work, except that we are uncomfortable working with real numbers. Furthermore, it is
unclear that a “random” matrix 𝐀 ∈ 𝕋𝑛×𝑚 will have an SIS solution at all. We therefore discretize.

Discretization. Consider splitting each entry into a multiple of 1/𝑞 (for some sufficiently large value of
𝑞 that we will set shortly) and an error term. That is,

𝐀 = 𝐐 + 𝐄 (mod 1)

where 𝑞𝐐 ∈ ℤ𝑛×𝑚 and ||𝐄||∞ ≤ 1/2𝑞.
Our first try is to feed the SIS algorithm with the matrix 𝑞𝐐 which is uniformly random mod 𝑞. The

adversary returns an 𝐱 such that 𝑞𝐐𝐱 = 0 (mod 𝑞). This gives us

𝟎 = 𝐐𝐱 = (𝐀 − 𝐄)𝐱 = 𝐁
−1
(𝐕 − 𝐁𝐄)𝐱 = 𝐁

−1
(𝐗 − 𝐁𝐄)𝐱 (mod 1)

and therefore, (𝐗 − 𝐁𝐄)𝐱 is a lattice vector. We would, in analogy to before, show that these are short
lattice vectors.

||𝐗𝐱 − 𝐁𝐄𝐱|| ≤ ||𝐗𝐱|| + ||𝐁𝐄𝐱|| ≤ 𝑠||𝐱||
√
𝑛 +

||𝐱||1

𝑞
⋅ max

𝑖
||𝐛𝑖||2

So, this does not give us short vectors, rather it reduces the length of the longest vector in the basis by a
factor of 𝑞/||𝐱||1 ≥ 𝑞/𝑚 (roughly, assuming SIS produces 0-1 vectors). So, as long as 𝑞 ≫ 𝑚 ≈ 𝑛 log 𝑞, we
get an improvement. Repeat this iteratively many times to get to roughly 𝑠

√
𝑚𝑛 ≈ 𝜆𝑛

√
𝑚𝑛 ≈ 𝜆𝑛 ⋅ 𝑂̃(𝑛).

We are stuck at solving 𝑛-approximate SIVP given a solver for SIS. Can we improve this?

Open Problem 3.1. Show a reduction from √
𝑛-SIVP (or better) to average-case SIS.

In the regime of exponential reductions, we show such reductions in a recent joint work with Brakerski
and Stephens-Davidowitz.

Another question is to improve the values of 𝑞 for which one can show SIS average-case hard.

Open Problem 3.2. Show a reduction from approximate SIVP to SIS with modulus 𝑞 = 𝑂(1).

Whydowe get a non-zero vector, again? There is one important issue that we overlooked. We showed
that the reduction produces a short lattice vector, but why is the vector non-zero? Relatedly, when the
reduction producesmany shorter vectors that form a new basis to iterate on, why dowe have the guarantee
that we get 𝑛 linearly independent vectors from the reduction?

7

We will now show non-zero-ness formally, but here is the intuition: we need to think of the SIS al-
gorithm as the adversary who is trying to send us a vector 𝐱 which is somehow cleverly designed so that
(𝐗 − 𝐁𝐄)𝐱 is the zero vector. What does the SIS algorithm see? It possibly sees 𝐕 = 𝐗 (mod (𝐁)) but (a)
it never sees 𝐗 itself; and (b) given 𝐕, there are multiple possible values of 𝐗, which is a consequence of
smoothing-type arguments. In other words, the adversary is trying to force (𝐗 − 𝐁𝐄)𝐱 to be 𝟎, but it does
not know what 𝐗 is. We then argue that information-theoretically, it cannot succeed.

We omit the formal argument, but refer the reader to Regev’s lecture notes for the full proof.

2.1 Other Open Problems

Vinod finds it rather bothersome that Ajtai’s reduction (and essentially every other known reduction) that
demonstrates average-case hardness of SIS starts from the SIVP problem, rather than the more natural SVP.
This motivates the following open problem.

Open Problem 3.3. Show a reduction from worst-case SVP to (average-case) SIS.

In fact, he would ideally like a reduction from worst-case SIS to average-case SIS, bypassing lattices al-
together. Indeed, observe that solving SIS is the same as finding a short vector in a lattice (namely, the
lattice Λ⟂(𝐀) ∶= {𝐱 ∈ ℤ𝑚 ∶ 𝐀𝐱 = 0 (mod 𝑞)}). However, even viewing through these lens, what we have
demonstrated is an algorithm that finds vectors of length related to 𝜆𝑛, and not 𝜆1. That is, if the worst-
case SIS lattice has a short vector but no 𝑛 linearly independent short vectors, then the reduction will miss
finding the short vector (‼) We view this as a deficiency in our understanding of SIS and worst-case to
average-case reductions. Therefore, a related problem is:

Open Problem 3.4. Show a reduction from worst-case SIS to average-case SIS without going through
lattices.

3 Bounded Distance Decoding and LWE

The bounded distance decoding (BDD) problem is a promise variant of the closest vector problem (CVP)
on lattices, where the target point is guaranteed to be so close to the lattice that there is a unique closest
vector. In other words, in the 𝑐-BDD problem for a 𝑐 ∈ [0, 1/2), one is given a basis 𝐁 ∈ ℤ𝑚×𝑚 of a lattice
(𝐁) and a target vector 𝐭 ∈ ℤ𝑚 such that dist(𝑡,(𝐁)) ≤ 𝑐 ⋅ 𝜆1((𝐁)), and the goal is to find the lattice
vector that is closest to 𝐭.

BDD and LWE are very closely related as the reader may have noticed already. In particular, LWE can
be seen as an average-case version of BDD in the following way. Define the LWE lattice

Λ(𝐀) ∶= {𝐳 ∈ ℤ
𝑚
∶ ∃ 𝐬 ∈ ℤ

𝑛
𝑞 s.t. 𝐳 = 𝐬

𝑇
𝐀 (mod 𝑞)}

(Note that 𝑞ℤ𝑚 ⊆ Λ(𝐀) ⊆ ℤ𝑚.) It is not hard to show that the minimum distance of Λ(𝐀) for a uniformly
random matrix 𝐀 ∈ ℤ𝑛×𝑚

𝑞 is 𝑐′𝑞1−𝑛/𝑚 with high probability. (We will leave this calculation as an exercise.)
LWE is then the regime where the secret 𝐬 (which defines the closest vector) is uniquely determined

given 𝐬𝑇𝐀 + 𝐞𝑇 .

8

https://cims.nyu.edu/~regev/teaching/lattices_fall_2009/

3.1 Discrete Gaussians Strike Again

As we saw in the last lecture, the Gaussian function

𝜌𝑠(𝐱) ∶= 𝑒
−𝜋||𝐱||2/𝑠2

from ℝ𝑛 to ℝ can be turned into a probability distribution over ℝ𝑛 by normalizing with ∫
ℝ𝑛 𝜌𝑠(𝐱)𝑑𝐱 = 𝑠𝑛.

Henceforth, we will call this the (𝑛-dimensional) Gaussian distribution 𝑁𝑠 . Thus,

𝑁𝑠(𝐱) =
1

𝑠𝑛
⋅ 𝑒

−𝜋||𝐱||2/𝑠2

Given a lattice , we will define the discrete Gaussian distribution 𝐷,𝑠 as the probability distribution that
assigns the value 0 to all 𝐱 ∉  and the values

𝐷,𝑠(𝐱) =
𝜌𝑠(𝐱)

𝜌𝑠()

for every 𝐱 ∈ . Here, 𝜌𝑠() ∶= ∑𝐯∈ 𝜌𝑠(𝐯).
The latter definition can be generalized to any discrete set; for example, we will let 𝐷+𝐜,𝑠 denote the

discrete Gaussian over the lattice coset+𝐜 = {𝐯+𝐜 ∶ 𝐯 ∈ }which assigns the Gaussianmass (normalized
appropriately) to each vector in  + 𝐜 and 0 to all other vectors.

We will also define off-centered versions of these quantities 𝜌𝑠,𝐜, 𝑁𝑠,𝐜 and𝐷,𝑠,𝐜; for example, 𝜌𝑠,𝐜(𝐱) ∶=
𝑒−𝜋||𝐱−𝐜||

2/𝑠2 , and so on.
When 𝑠 exceeds the smoothing parameter of the lattice 𝜂𝜀(), the discrete Gaussian over  starts

having a number of nice regularity properties that make it behave essentially as if it were a continuous
Gaussian distribution. Some examples follow.

Lemma 10. For any 𝐜 ∈ ℝ𝑛, and 𝑠 ≥ 𝜂𝜀(),

𝜌𝑠( + 𝐜) ∈ [1 − 2𝜀, 1 + 2𝜀] ⋅ 𝜌𝑠()

Proof. Let 𝐜′ denote the shortest vector in the lattice coset  + 𝐜. Then,

𝜌𝑠( + 𝐜) = 𝜌𝑠,−𝐜()
= det(∗

) ⋅ 𝜌𝑠,−𝐜(∗
)

= det(∗
) ⋅ ∑

𝐳∈∗

𝜌𝑠,−𝐜(𝐳)

= det(∗
) ⋅ ∑

𝐳∈∗

𝑒
2𝜋𝑖⟨𝐜,𝐳⟩

𝜌1/𝑠(𝐳)

= det(∗
) ⋅

(
1 + ∑

𝐳∈∗⧵{𝟎}

𝑒
2𝜋𝑖⟨𝐜,𝐳⟩

𝜌1/𝑠(𝐳)
)

∈ [1 − 𝜀, 1 + 𝜀] ⋅ det(∗
)

The claim follows.

A direct corollary is the following statement about discrete Gaussians modulo sublattices. It says that
if you choose a vector from a discrete Gaussian over a dense (rank 𝑛) lattice  and reduce it modulo a
sparser (also rank 𝑛) lattice ′ ⊆ , you get a uniformly random element of the finite group /′. This
will be instantiated later in the lecture where  will be an arbitrary lattice and ′ = 𝑞 will be a scaling
of it. Here, /′ ≅ ℤ𝑛

𝑞 .

9

Lemma 11 (Discrete+Continuous Convolution). Let  be a lattice. Consider the distribution obtained by
sampling a vector 𝐯 from the discrete Gaussian 𝐷,𝑠 and a vector 𝐰 from the continuous Gaussian 𝑁𝑟 and
adding them together, where 𝑠, 𝑟 ≥ 𝜂𝜀() ⋅

√
2 (where 𝜀 is a negligible function of 𝑛). Then, the resulting

distribution is statistically close to the continuous Gaussian 𝑁√
𝑟2+𝑠2

.

Proof. Consider the distribution 𝑌 obtained by adding up the two vectors. Let 𝑡 =
√
𝑟2 + 𝑠2.

𝑌 (𝐱) = ∑

𝐯∈
Pr
𝐷,𝑠

[𝐯] ⋅ Pr
𝑁𝑟

[𝐱 − 𝐯]

=
1

𝜌𝑠() ⋅ 𝑟𝑛
∑

𝐯∈
𝜌𝑠(𝐯) ⋅ 𝜌𝑟(𝐱 − 𝐯)

=
1

𝜌𝑠() ⋅ 𝑟𝑛
∑

𝐯∈
𝑒
−𝜋||𝐯||2/𝑠2

⋅ 𝑒
−𝜋||𝐱−𝐯||2/𝑟2

=
1

𝜌𝑠() ⋅ 𝑟𝑛
∑

𝐯∈
𝑒
−𝜋(||𝐯||

2 ⋅(𝑡2/𝑟2𝑠2)−2⟨𝐱,𝐯⟩/𝑟2+||𝐱||2/𝑟2)

=
𝑒
−𝜋||𝐱||2 ⋅ 1

𝑟2
⋅(1− 𝑠2

𝑡2
)

𝜌𝑠() ⋅ 𝑟𝑛
∑

𝐯∈
𝑒
−𝜋(||𝐯||

2 ⋅(𝑡2/𝑟2𝑠2)−2⟨𝐱,𝐯⟩/𝑟2+||𝐱||2 ⋅(𝑠2/𝑡2𝑟2))

=
𝑒−𝜋||𝐱||

2/𝑡2

𝜌𝑠() ⋅ 𝑟𝑛
∑

𝐯∈
𝑒
−𝜋||𝐯−𝑠2/𝑡2 ⋅𝐱||2/(𝑟𝑠/𝑡)2

=
𝜌𝑡(𝐱)

𝑡𝑛
⋅
𝑡𝑛

𝑟𝑛
⋅
𝜌𝑟𝑠/𝑡,𝑠2/𝑡2 ⋅𝐱()

𝜌𝑠()

∈ [1 − 𝜀, 1 + 𝜀] ⋅
𝜌𝑡(𝐱)

𝑡𝑛
⋅
𝑡𝑛

𝑟𝑛
⋅
𝜌𝑟𝑠/𝑡()
𝜌𝑠()

where we used Lemma 10 on the numerator since 𝑟𝑠/𝑡 ≥ 𝜂𝜀().
By Proposition 12, we have 𝜌𝑟𝑠/𝑡 ()

𝜌𝑠() ∈ [1 − 2𝜀, 1 + 2𝜀] ⋅ (𝑟/𝑡)𝑛. Put together with the above, we have

𝑌 (𝐱) ∈ [1 − 3𝜀, 1 + 3𝜀] ⋅ 𝑁𝑡(𝐱)

from which it follows that the statistical distance between the two distributions in question is at most
3𝜀.

Proposition 12. Assume that 𝑠1, 𝑠2 ≥ 𝜂𝜀(). Then,

𝜌𝑠1()
𝜌𝑠2()

∈ [1 − 2𝜀, 1 + 2𝜀] ⋅
(

𝑠1

𝑠2)

𝑛

Proof. We have
𝜌𝑠() = det(∗

) ⋅ 𝑠
𝑛
𝜌1/𝑠(∗

) ∈ [1 − 𝜀, 1 + 𝜀] ⋅ 𝑠
𝑛
⋅ det(∗

)

where the first equality uses Poisson summation and the fact that 𝜌𝑠 = 𝑠𝑛𝜌1/𝑠 , and the second the definition
of the smoothing parameter and the fact that 𝑠 ≥ 𝜂𝜀(). Thus,

𝜌𝑠1()
𝜌𝑠2()

∈ [1 − 2𝜀, 1 + 2𝜀] ⋅
(

𝑠1

𝑠2)

𝑛

10

3.2 Poor Person’s Discrete Gaussian Sampling

For the first step of our reduction in the next section, we need an algorithm to sample from the discrete
Gaussian distribution 𝐷,𝑠 given 𝑠 and some basis 𝐁 of . Clearly, this is hard to do if 𝑠 < 1/

√
𝑛 ⋅max𝑖 ||𝐛𝑖||

as it will then give us a way to make the vectors of 𝐁 shorter, a computationally hard problem. However,
one can hope that for significantly larger 𝑠, this is possible. Indeed, Gentry, Peikert and Vaikuntanathan,
following an algorithm of Klein, show such a (polynomial-time) algorithmwith 𝑠 ≥ 𝜔(

√
log 𝑛)⋅max𝑖 ||𝐛𝑖|| (in

fact, something slightly stronger but it will not matter to us). Their algorithm samples from a distribution
that is negligibly close (in statistical distance) to the discrete Gaussian.

Here, we will make do with something significantly weaker.
We will show a very simple algorithm SimpleDGS that samples from the discrete Gaussian 𝐷,𝑠 where

𝑠 ≥ 2𝑛 ⋅max𝑖 ||𝐛𝑖||. The algorithm simply samples a vector 𝐯 ← 𝑁𝑠 from the continuous Gaussian distribution
with parameter 𝑠 and “rounds” it modulo the parallelepiped (𝐁). That is, output

𝐯
′
= 𝐁⌊𝐯⌋ ∈ (𝐁)

To show that this is statistically close to 𝐷,𝑠 , we calculate the two probabilities:

• Pr[𝐰 ∼ 𝐷,𝑠] = 𝑐 ⋅ 𝜌𝑠(𝐰) for some constant normalization factor 𝑐.

• Pr[𝐰 ∼ SimpleDGS] = 𝑐′ ⋅ ∫
𝐱∈(𝐁)

𝜌𝑠(𝐰 + 𝐱)𝑑𝐱.

The intuition is that 𝜌𝑠(𝐰 + 𝐱) is very close to 𝜌𝑠(𝐰) for all the typical vectors, that is, vectors of length at
most 𝑠√𝑛. Indeed,

𝜌𝑠(𝐰 + 𝐱) = 𝜌𝑠(𝐰) ⋅ 𝑒
−𝜋(2⟨𝐰,𝐱⟩+||𝐱||2)/𝑠2

It suffices to show that |2⟨𝐰, 𝐱⟩ + ||𝐱||2)/𝑠2| is very small. Note that this quantity is at most (2||𝐰||||𝐱|| +

||𝐱||2)/𝑠2 by Cauchy-Schwartz. Since ||𝐰|| ≈ 𝑠
√
𝑛 is the length of the typical vectors (Exercise: Check this!)

and 𝑠 ≫ 2𝑛max𝑖 ||𝐛𝑖|| ≥ 2𝑛||𝐱||, we are done.
A remark to a reader who might be wondering if this algorithm in fact performs better, i.e., with a

smaller 𝑠, and if the large 𝑠 is merely an artifact of our analysis. To show that it is not, the reader is
recommended to let  = ℤ and show that for small 𝑠, the rounded continuous Gaussian (our distribution)
and the discrete Gaussian over ℤ are in fact statistically far.

3.3 From (Worst-case) BDD to (Average-case) LWE

We show the reduction from the worst-case bounded distance decoding problem, which we saw was
morally the same as the LWE problem, to the average-case LWE problem.

We will produce LWE samples where the LWE noise are drawn from a continuous Gaussian. It is easy
to discretize it and make the noise comes from the rounded continuous Gaussian distribution.

Claim 13. The vectors 𝐚𝑖 are statistically close to uniformly random in ℤ𝑛
𝑞 and independent.

Proof. By inspection, we see that the probability of getting 𝐚𝑖 is the probability that the discrete Gaussian
𝐷∗,𝑠 lands up in the set 𝑞∗ + 𝐁∗𝐚𝑖. This is precisely

𝜌𝑠(𝑞∗ + 𝐜)

∑𝐜 𝜌𝑠(𝑞∗ + 𝐜)
(2)

11

Regev’s BDD to LWE Reduction

Input: Lattice basis 𝐁 ∈ ℤ𝑛×𝑛, 𝐭 = 𝐁𝐬 + 𝐞 ∈ ℤ𝑛.
(For simplicity, we will assume that ||𝐞|| is known.)

Output: LWE instance 𝐀 ∈ ℤ𝑛×𝑚
𝑞 , 𝐲 ∈ ℤ𝑚

𝑞 .

Repeat 𝑚 times:
▶ Let 𝑞 ≥ 22𝑛, where 𝑠 ≥ 𝑞

√
2 ⋅ 𝜂𝜀(∗) and 𝑟 ≥

√
2 ⋅ ||𝐱|| ⋅ 𝜂𝜀(∗).

▶ Sample a vector 𝐯𝑖 ← 𝐷∗,𝑠 .
▶ Compute

𝐚𝑖 ∶= (𝐁
∗
)
−1
𝐯𝑖 = 𝐁

𝑇
𝐯𝑖 (mod 𝑞) and 𝑏𝑖 ∶= 𝐭

𝑇
𝐯𝑖 + 𝑒

′
𝑖 (mod 𝑞)

where 𝑒′𝑖 ← 𝑁𝑟 .

Run the LWE algorithm on input (𝐀, 𝐛) where the columns of 𝐀 are the 𝐚𝑖, and output what it
outputs.

Since 𝑠 ≥ 𝑞𝜂𝜀(∗) = 𝜂𝜀(𝑞∗), we know by Lemma 10 that

∑

𝐜

𝜌𝑠(𝑞∗
+ 𝐜) ∈ [1 − 2𝜀, 1 + 2𝜀] ⋅ 𝜌𝑠(𝑞∗

) ⋅ 𝑞
𝑛

and
𝜌𝑠(𝑞∗

+ 𝐜) ∈ [1 − 2𝜀, 1 + 2𝜀] ⋅ 𝜌𝑠(𝑞∗
)

therefore, the ratio in equation 2 is in the range 1
𝑞𝑛

⋅ [1 − 4𝜀, 1 + 4𝜀]. Consequently, the statistical distance
is at most 4𝜀.

Claim 14. 𝑏𝑖 = 𝐬𝑇 𝐚𝑖 + 𝑒𝑖 and 𝑒𝑖 is statistically close to a (1-dimensional) continuous Gaussian 𝑁𝑡 where
𝑡 = ||𝐱|| ⋅

√
2𝜂𝜀(∗).

Proof. For the reduction and the proof, we will assume that ||𝐞|| is known. This assumption can be removed
with more care; we refer to Regev’s 2005 paper for more details.

Start by noting that

𝑏𝑖 = 𝐭
𝑇
𝐯𝑖 + 𝑒

′
𝑖 (mod 𝑞)

= (𝐬
𝑇
𝐁
𝑇
+ 𝐞

𝑇
)𝐁

∗
𝐚𝑖 + 𝑒

′
𝑖 (mod 𝑞)

= 𝐬
𝑇
𝐁
𝑇
𝐁
−𝑇

𝐚𝑖 + 𝐞
𝑇
𝐯𝑖 + 𝑒

′
𝑖 (mod 𝑞)

= 𝐬
𝑇
𝐚𝑖 + 𝑒𝑖 (mod 𝑞)

where the second equality follows from the definition of 𝐭 ∶= 𝐁𝐬 + 𝐞 and that of 𝐚𝑖, and 𝑒𝑖 ∶= 𝐞𝑇𝐯𝑖 + 𝑒′𝑖 . It
remains to analyze the distribution of 𝑒𝑖.

12

First, 𝑒′𝑖 is distributed like 𝐞𝑇𝐰𝑖 where 𝐰𝑖 is a continuous Gaussian with parameter
√
2𝜂𝜀(∗). Thus,

𝑒
′
𝑖 = 𝐞

𝑇
(𝐯 + 𝐰) = 𝐞

𝑇
𝐰

′

where 𝐰′ is distributed like 𝑁𝑠′ by Lemma 11 with

𝑠
′
≈ 𝑞 ⋅ ||𝐱|| ⋅ 𝜂𝜀(∗

) ≤ 𝑐𝑞𝜆1()𝜂𝜀(∗
) ∈ 𝑐𝑞 ⋅ [1,

√
𝑛]

by Banaszczyk’s theorem. In the worst case, if 𝑐 ≪ 1/
√
𝑛, this gives us an LWE distribution with mean-

ingfully bounded error.

In summary, the reduction solves 1/√𝑛-BDD assuming an LWE solver with a constant factor noise-
to-modulus ratio.

3.4 From (Worst-case) SIVP to (Worst-case) BDD

3.4.1 A Classical Reduction

We now present a classical reduction from gapSVP to BDD due to Peikert. We contrast this with Regev’s
quantum reduction from SIVP to BDD.

The advantage of Peikert’s reduction, of course, is that it is classical. However, it is a reduction from
a decision problem (gapSVP) to a search problem (BDD), as opposed to Regev’s quantum reduction that
reduces from search SIVP. For classes of lattices such as ideal lattices, the gapSVP problem for small factors
turns out to be easymaking the (analogous) reduction vacuous, so it is important to find a reduction starting
from a search problem. Thus, the following question is wide open.

Open Problem 4.1. Show a (worst-case) reduction from SIVP (or SVP or CVP) to BDD.

We sketch the idea behind Peikert’s reduction which in turn draws inspiration from a beautiful 𝑐𝑜𝐴𝑀
protocol for gapSVP due to Goldreich and Goldwasser. Let  be the input lattice with the promise that
𝜆1() ≤ 1 or 𝜆1() > 𝛾 . Assume that we have access to a 𝑐-BDD solver, namely an algorithm that returns
the closest lattice vector given the promise that the target point is within distance 𝑐 ⋅𝜆1() from the lattice.
The reduction works as follows.

• Pick a random lattice point 𝐳 ∈  and add a random point 𝐞 from a ball of radius 𝑐 ⋅ 𝛾 .

• Run the BDD solver with input 𝐭 ∶= 𝐳 + 𝐞.

• If the BDD solver produces a vector 𝐳′ = 𝐳, output NO (“large 𝜆1”) else output NO (“small 𝜆1”).

On the one hand, if 𝜆1() > 𝛾 , then the distance of 𝐭 from the lattice is at most 𝑐 ⋅ 𝜆1() and thus it
satisfies the BDD promise. Consequently, the BDD solver will return 𝐳. On the other hand, if 𝜆1() ≤ 1,
the (uniform distribution on the) balls centered at 𝐳 and 𝐳 + 𝐮 where ||𝐮|| = 𝜆1() are statistically close, if
𝑐𝛾 ≥

√
𝑛. Therefore, a 𝑐-BDD algorithm helps us solve √𝑛/𝑐-gapSVP.

Putting this together with the worst-case to average-case reduction, we get a 𝑂(𝑛)-gapSVP algorithm
given an LWE solver with constant noise-to-modulus ratio.

13

	Lattice Smoothing
	Lattice Duality
	Gaussians
	Basic Fourier Analysis
	Smoothing Lemma and Proof

	Worst-case to Average-case Reduction for SIS
	Other Open Problems

	Bounded Distance Decoding and LWE
	Discrete Gaussians Strike Again
	Poor Person's Discrete Gaussian Sampling
	From (Worst-case) BDD to (Average-case) LWE
	From (Worst-case) SIVP to (Worst-case) BDD
	A Classical Reduction

