
Fully Homomorphic Encryption
We will let 𝜆 be a security parameter throughout this lecture. That is, all honest parties run in time a

fixed polynomial in 𝜆, and adversaries can run in time an arbitrary polynomial in 𝜆.
In a fully homomorphic (private or public-key) encryption, anyone can take a set of encryptedmessages

Enc(𝑥1), … ,Enc(𝑥𝑘) and produce an encryption of any polynomial-time computable function of them, that is,
Enc(𝑓 (𝑥1, … , 𝑥𝑘))where 𝑓 is any function with a poly(𝜆)-size circuit. By a result of Rothblum, any private-
key (even additively) homomorphic encryption scheme can be converted to a public-key homomorphic
scheme, so we will focus our attention on private-key schemes henceforth.

The formal definition of the functionality of fully homomorphic encryption follows.

• KeyGen(1𝜆): produces a secret key sk, possibly together with a public evaluation key ek.

• Enc(sk, 𝜇), where 𝜇 ∈ {0, 1}: produces a ciphertext 𝑐.

• Dec(sk, 𝑐): outputs 𝜇.
// So far, everything is exactly as in a regular secret-key encryption scheme.

• Eval(ek, 𝑓 , 𝑐1, … , 𝑐𝑘) takes as input a poly(𝜆)-size circuit that computes a function 𝑓 ∶ {0, 1}𝑘 → {0, 1},
as well as 𝑘 ciphertexts 𝑐1, … , 𝑐𝑘 , and outputs a ciphertext 𝑐𝑓 .

Correctness says that

Dec(sk,Eval(ek, 𝑓 ,Enc(sk, 𝜇1), … , Enc(sk, 𝜇𝑘))) = 𝑓 (𝜇1, … , 𝜇𝑘)

for all 𝑓 , 𝜇1, … , 𝜇𝑘 with probability 1 over the sk, ek and the randomness of all the algorithms.
Security is just semantic (IND-CPA) security, that is the encryptions of any two sequences of messages

(𝜇𝑖)𝑖∈poly(𝜆) and (𝜇′𝑖)𝑖∈poly(𝜆) are computationally indistinguishable. (the fact that the encryption scheme is
homomorphic is a functionality requirement, and does not change the notion of security.)

(Enc(𝑠𝑘, 𝜇1), … ,Enc(sk, 𝜇𝑝(𝜆))) ≈𝑐 (Enc(𝑠𝑘, 𝜇′1), … ,Enc(sk, 𝜇′′𝑝(𝜆)))

A final and important property is compactness, that is, |𝑐𝑓 | = poly(𝜆), independent of the circuit size of 𝑓 .
(Weaker compactness conditions are possible, and indeed, we will see one as we go along.)

1 The Gadget Matrix

First define the gadget vector (or the bit-decomposition gadget vector) 𝐠:

𝐠𝑇 ∶= [1 2 4 … 2⌈log 𝑞⌉−1] ∈ ℤ1×⌈log 𝑞⌉
𝑞

Note that given any 𝑣 ∈ ℤ𝑞 , it is easy to produce a vector 𝐱 ∈ ℤ⌈log 𝑞⌉×1
𝑞 such that (a) the entries of 𝐱 are

small, in fact they are binary; and (b) 𝐠𝑇𝐱 = 𝑣 mod 𝑞. 𝐱 simply contains the bits of 𝑣 from the least to the
most significant bit.

Extending this to 𝑛 dimensions, we define the gadget matrix 𝐆:

𝐆 ∶= 𝐈𝑛 ⊗ 𝐠𝑇 ∈ ℤ𝑛×𝑛⌈log 𝑞⌉
𝑞

where 𝐈𝑛 is the 𝑛 × 𝑛 identity matrix. In other words, 𝐆 is the block diagonal 𝑛 × (𝑛⌈log 𝑞⌉) matrix with 𝐠𝑇
in each of its diagonal blocks.

Similar to the above, it is easy, given a vector 𝐯 ∈ ℤ𝑛
𝑞 , to produce a bit vector 𝐱 such that𝐆𝐱 = 𝐯 mod 𝑞.

We will let 𝐱 be denoted as 𝐆−(𝐯).

1

2 The GSW Scheme

The first candidate FHE scheme was due to Gentry in 2009. The first LWE-based FHE Scheme was due to
Brakerski and Vaikuntanathan in 2011. We will present a different FHE scheme due to Gentry, Sahai and
Waters (2013) which is both simple and quite flexible.

• KeyGen: the secret key is a vector 𝐬 = [
𝐬′
−1] where 𝐬

′ ∈ ℤ𝑛
𝑞 .

• Enc: output 𝐀 + 𝜇𝐆 where 𝐀 is a random matrix such that

𝐬𝑇𝐀 ≈ 𝟎 (mod 𝑞)

and 𝐆 is a fixed matrix chosen cleverly; we will see how in a bit.
Here is one way to do it: choose a random matrix 𝐀′ and let

𝐀 ∶= [
𝐀′

(𝐬′)𝑇𝐀′ + 𝐞′]

• Dec: Let 𝐂 be a ciphertext and 𝐜 be its last column. Output

Round𝑞/2(𝐬𝑇 𝐜)

where Round𝑞/2 outputs 1 on input 𝑥 where |𝑥 − 𝑞/2| ≤ 𝑞/4 and 0 otherwise.

• Eval: we will show how to ADD (over the integers) and MULT (mod 2) the encrypted bits which will
suffice to compute all Boolean functions.

3 How to Add and Multiply (without errors)

Let’s start with a variant of the scheme where the ciphertext is

𝐂 = 𝐀 + 𝜇𝐈

where 𝐈 is the identity matrix and 𝐬𝑇𝐀 = 𝟎 (as opposed to 𝐬𝑇𝐀 ≈ 𝟎.)
Now,

𝐬𝑇𝐂 = 𝜇𝐬𝑇

• ADD(𝐂1, 𝐂2) outputs 𝐂1 + 𝐂2. This is an encryption of 𝜇1 + 𝜇2 since

𝐬𝑇 (𝐂1 + 𝐂2) = (𝜇1 + 𝜇2)𝐬𝑇

Eigenvalues add.

• MULT(𝐂1, 𝐂2) outputs 𝐂1𝐂2. This is an encryption of 𝜇1𝜇2 since

𝐬𝑇 (𝐂1𝐂2) = 𝜇1𝐬𝑇𝐂2 = 𝜇1𝜇2𝐬𝑇

Eigenvalues multiply.

We need one ingredient now to turn this into a real FHE scheme, namely the gadget matrix.

2

4 How to Add and Multiply (with errors)

We have to be careful to multiply approximate equations by small numbers. Once we make adjustments
to this effect, we get the GSW scheme. The ciphertext is

𝐂 = 𝐀 + 𝜇𝐆

where 𝐬𝑇𝐀 ≈ 𝟎. Think of 𝐆 as an error correcting artifact for the message 𝜇.
Now,

𝐬𝑇𝐂 ≈ 𝜇𝐬𝑇𝐆

which is the approximate eigenvalue equation.

• ADD(𝐂1, 𝐂2) outputs 𝐂1 + 𝐂2. This is an encryption of 𝜇1 + 𝜇2 since

𝐬𝑇 (𝐂1 + 𝐂2) ≈ (𝜇1 + 𝜇2)𝐬𝑇𝐆

Approximate eigenvalues add (if you don’t do it too many times.)

• MULT(𝐂1, 𝐂2) outputs 𝐂1𝐆−(𝐂2). This is an encryption of 𝜇1𝜇2 since

𝐬𝑇 (𝐂1𝐆−(𝐂2)) = (𝐬𝑇𝐂1)𝐆−(𝐂2) ≈ (𝜇1𝐬𝑇𝐆)𝐆−(𝐂2) = 𝜇1(𝐬𝑇𝐂2) ≈ 𝜇1𝜇2𝐬𝑇𝐆

where the first ≈ is because 𝐆−(𝐂2) is small and the second ≈ because 𝜇1 is small.
Approximate eigenvalues multiply if you only multiply by small numbers/matrices.

Put together, it is not hard to check that you can evaluate depth-𝑑 circuits of NAND gates with error
growth 𝑚𝑂(𝑑). (You can do better for log-depth circuits by converting them to branching programs; see
Brakerski-Vaikuntanathan 2014.)

5 Bootstrapping to an FHE

With this, we get a leveled FHE scheme. That is, we can set parameters (in particular 𝑞 = 𝑚Ω(𝑑)) such that
the scheme is capable of evaluating depth-𝑑 circuits. The parameters of the scheme will grow polynomially
with the depth of the circuits it computes.

What if we want to set parameters such that the scheme can evaluate circuits of any polynomial depth?
That would be an FHE scheme for real. Essentially the only way we know to construct an FHE scheme at
this point is using Gentry’s bootstrapping technique which we describe below. (although, when we study
obfuscation later on in the course, we will see an alternative.) Doing so involves making an additional
assumption on the circular security of the GSW encryption scheme. Whether the circular security of the
GSW scheme follows from LWE is an open question.

5.1 The Idea

Assume that you are the homomorphic evaluator and in the course of homomorphic evaluation, you get
two (GSW) ciphertexts 𝐂 and 𝐂′ which are (a) decryptable to 𝜇 and 𝜇′ respectively, in the sense that their
decryption noise has 𝓁∞ norm less than 𝑞/4; but (b) not computable, in the sense that they will become
undecryptable after another homomorphic evaluation, say of a NAND. What should you do with these
ciphertexts?

3

Here is an idea: If you had the secret key, you could decrypt 𝐂 and 𝐂′, re-encrypt them with fresh small
noise and proceed with the computation. In fact, you could do this after every gate. But this is clearly silly.
If you had the secret key, why bother with encrypted computation in the first place?

Here is a better idea: assume that you have a ciphertext 𝐂̃ of the FHE secret key encrypted under the secret
key itself (a so-called “circular encryption”). Then, you could homomorphically evaluate the following
circuit on input 𝐂̃:

BootNAND𝐂,𝐂′(sk) = Decsk(𝐂) NAND Decsk(𝐂′)

What you get out is an encryption of 𝜇 NAND 𝜇′. How did this happen (and what did happen?) First of
all, note that 𝐂̃ is a fresh encryption of sk. Secondly, assume that the BootNAND circuit (which is predomi-
nantly the decryption circuit) has small depth, small enough that the homomorphic evaluation can handle
it. The output of the circuit on input sk is indeed 𝜇 NAND 𝜇′; therefore, putting together this discussion,
the output of the homomorphic evaluation of the circuit is an encryption of 𝜇 NAND 𝜇′ under sk.

Once we can implement BootNAND, this is how we evaluate every NAND gate. You get as input two
ciphertexts𝐂 and𝐂′. You donot homomorphically evaluate on them, as then youwill get garbage. Instead,
use them to construct the circuit BootNAND𝐂,𝐂′ . and homomorphically evaluate it on an encryption 𝐂̃ of
the secret key sk that you are given as an additional evaluation key.

Voila! This gives us a fully homomorphic encryption scheme.

5.2 Circular Security

Is it OK to publish a circular encryption? Does the IND-CPA security of the scheme hold when the adver-
sary additionally gets such an encryption? First of all, the IND-CPA security of the underlying encryption

4

scheme (GSW in this case) alone does not tell us anything about what happens in this scenario. Indeed,
you can construct an IND-CPA secure encryption scheme whose security breaks completely given such a
circular encryption. (I will leave it as an exercise.)

Secondly, and quite frustratingly, we do know how to show that the Regev encryption scheme is
circular-secure assuming LWE, but showing that the GSW scheme is circular-secure is one of my favorite
open problems in lattice-based cryptography. For some modest progress on this question, see my paper
with Daniele Micciancio.

5

https://link.springer.com/chapter/10.1007/978-3-031-57728-4_10
https://link.springer.com/chapter/10.1007/978-3-031-57728-4_10

	The Gadget Matrix
	The GSW Scheme
	How to Add and Multiply (without errors)
	How to Add and Multiply (with errors)
	Bootstrapping to an FHE
	The Idea
	Circular Security

