
Lattice Trapdoors and Gaussian Sampling

We will work with the 𝓁∞ norm throughout these lecture notes; tighter bounds are sometimes possible
with the Euclidean norm but we would like to avoid the complication of computing the exact factors in
favor of simplicity and conceptual clarity.

1 Lattice Trapdoors

Recall that
Λ
⟂
(𝐀) = {𝐳 ∈ ℤ

𝑚
∶ 𝐀𝐳 = 𝟎 (mod 𝑞)}

is a rank-𝑚 lattice. We will define a lattice trapdoor for a matrix 𝐀 ∈ ℤ
𝑛×𝑚

𝑞
to be a short basis for Λ⟂

(𝐀).
More generally, a set of short linearly independent vectors in Λ

⟂
(𝐀) suffices. More explicitly:

Definition 1. A matrix 𝐓 ∈ ℤ
𝑚×𝑚 is a 𝛽-good lattice trapdoor for a matrix 𝐀 ∈ ℤ

𝑛×𝑚

𝑞
if

1. Each column vector of 𝐓 is in the (right) mod-𝑞 kernel of 𝐀, namely, 𝐀𝐓 = 𝟎 (mod 𝑞);

2. Each column vector of 𝐓 is short, namely ||𝐓||∞ ≤ 𝛽; and

3. 𝐓 has rank 𝑚 over ℝ.

Note that the rank of 𝐓 overℤ𝑞 can be no more than𝑚−𝑛; so, at first sight, the first and the third conditions
may appear to be contradictory. However, the fact that we require the real rank over 𝐓 to be large is the
crucial thing here. This is related to why Λ

⟂
(𝐀) as a lattice has rank 𝑚, even though as a linear subspace of

ℤ
𝑚

𝑞
has rank only 𝑚−𝑛. Another way to look at 𝐓 is that each of its columns is a homogenous SIS solution

with respect to 𝐀.
What good is such a trapdoor? We will demonstrate (in Section 3) its usefulness by showing that it

can be used to solve both LWE and (inhomogenous) SIS with respect to 𝐀.

2 Trapdoor Sampling

2.1 Leftover Hash Lemma

We will use the following form of the leftover hash lemma.

Lemma 2. Let 𝑃 be a probability distribution overℤ𝑚. The following two distributions have statistical distance
at most 𝜀 as long as 𝐻∞(𝑃) ≥ 𝑛 log 𝑞 + 2 log(1/𝜀):

(𝐀, 𝐀𝐞 (mod 𝑞)) ≈ (𝐀, 𝐮)

where 𝐀 ← ℤ
𝑛×𝑚

𝑞
is uniformly random, 𝐞 ← 𝑋 is drawn from the probability distribution 𝑃 and 𝐮 ← ℤ

𝑛

𝑞
is

uniformly random. Here, 𝐻∞(𝑃) refers to the min-entropy of 𝑃 .

For a proof, we refer the reader to these lecture notes.

1

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf


2.2 Sampling a Random 𝐀 with a Single Trapdoor Vector

Ajtai in 1996 gave us a procedure to sample a (statistically close to) uniformly random matrix 𝐀 ∈ ℤ
𝑛×𝑚

𝑞

together with a single short vector 𝐭 ∈ ℤ
𝑚 such that 𝐀𝐭 = 𝟎 (mod 𝑞). We begin our journey into trapdoors

by describing this simple procedure.

1. Pick a uniformly random matrix 𝐀
′
∈ ℤ

𝑛×(𝑚−1)

𝑞 .

2. Pick a uniformly random vector 𝐭′ ∈ {0, 1}
𝑚−1.

3. Define
𝐀 = [𝐀

′
|| − 𝐀

′
𝐭
′

(mod 𝑞)] and 𝐭 =
[

𝐭
′

1 ]

as the matrix and trapdoor vector, respectively.

It is clear that 𝐭 is a short vector in the right kernel of 𝐀 mod 𝑞. It remains to show that 𝐀 is close to
uniformly random, which reduces to showing that 𝐀′

𝐭 is close to uniform given 𝐀
′. This follows directly

from the leftover hash lemma assuming that 𝑚 ≥ 𝑛 log 𝑞 + 𝜆.
More generally, if we let ||𝐭||∞ ≤ 𝐵, then we need 𝑚 ≥ 𝑛 log 𝑞/ log 𝐵 + 𝜆.

2.3 Ajtai-MP Trapdoor Sampling

Now, one can try to extend the above procedure to sample 𝐀 together with more and more short vectors
until you reach 𝑚 (hopefully) linearly independent vectors and then we have a trapdoor! However, this
naı̈ve idea fails to work. Indeed, letting 𝑚

∗
∶= 𝑛 log 𝑞 + 𝜆, we can generate a close to uniform matrix

𝐀 ∈ ℤ
𝑛×(𝑚

∗
+𝓁)

𝑞 together with 𝓁 trapdoor vectors (We leave it as an exercise to the reader to figure out how.)
However, this will never “catch up” as the number of trapdoor vectors (𝓁) always remains short of the rank
(𝑚∗

+ 𝓁).
We start with the observation that an “inhomogenous trapdoor” (a notion that we will define in a

minute) will let us achieve our goals of solving LWE and SIS just as well. An inhomogenous trapdoor
𝐓 ∈ ℤ

𝑚×𝑛 log 𝑞 is a matrix with short columns such that 𝐀𝐓 = 𝐆 (mod 𝑞) where 𝐆 is a gadget matrix
defined as below:

𝐠 ∶= [ 1 2 4 … 2
⌈log 𝑞⌉−1

] ∈ ℤ
1×⌈log 𝑞⌉

𝑞 and 𝐆 ∶= 𝐈 ⊗ 𝐠

where 𝐈 is the 𝑛 × 𝑛 identity matrix. In other words, 𝐆 is the block diagonal 𝑛 × (𝑛⌈log 𝑞⌉) matrix with 𝐠 in
each of its diagonal blocks.

Why does this suffice to solve LWE and SIS? Let’s do LWE first. Given 𝐛
𝑇
= 𝐬

𝑇
𝐀+ 𝐞

𝑇
(mod 𝑞), we do

𝐛
𝑇
𝐓 = (𝐬

𝑇
𝐀 + 𝐞

𝑇
)𝐓 = 𝐬

𝑇
𝐆 + 𝐞

𝑇
𝐓 (mod 𝑞)

In other words, we just transformed an LWE sample relative to 𝐀 into an LWE sample relative to 𝐆, with
a slight increase in error. Now, if we have a trapdoor (in the sense of Definition 1) for 𝐆 (and we will show
in a few minutes that we do indeed have such a trapdoor), we can solve LWE!

To solve SIS w.r.t. 𝐆, we simply note that given a vector 𝐯 ∈ ℤ
𝑛

𝑞
, it is easy to compute a bit vector

𝐞
′
∈ {0, 1}

𝑚
∗ such that 𝐆𝐞′ = 𝐯 (mod 𝑞). Indeed 𝐞

′ is simply the 𝑛⌈log 𝑞⌉-dimensional bit-vector that
consists of the bit representations of each element in 𝐯.

2



Trapdoor for 𝐆: The case of 𝑞 = 2
𝑘. We invite the reader to think about this a bit before reading on.

Let us first construct a trapdoor 𝐓𝐠 ∈ ℤ
⌈log 𝑞⌉×⌈log 𝑞⌉. We will then see that 𝐓𝐆 = 𝐈 ⊗ 𝐓𝐠. Indeed,

𝐆 ⋅ 𝐓𝐆 = (𝐈 ⊗ 𝐠) ⋅ (𝐈 ⊗ 𝐓𝐠) = 𝐈 ⊗ (𝐠𝐓𝐠) = 𝟎 (mod 𝑞)

Here is the trapdoor for 𝐠:

𝐓𝐠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2

−1 2

−1 …

⋱

2

−1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Let us check.

• 𝐓𝐠 has short columns. Indeed ||𝐓𝐠||∞ = 2.

• 𝐠𝐓𝐠 = 0 (mod 𝑞).

• The determinant of 𝐓𝐠 is 𝑞 = 2
𝑘 . Therefore, it has full rank over ℝ. It decidedly does not have full

rank over ℤ𝑞 since its determinant is 0 mod 𝑞. (And this had better be the case!)

Trapdoor for 𝐆: The general case. As before, let us construct a trapdoor 𝐓𝐠 ∈ ℤ
⌈log 𝑞⌉×⌈log 𝑞⌉. We will

then see that 𝐓𝐆 = 𝐈 ⊗ 𝐓𝐠. Here is the trapdoor for 𝐠:

𝐓𝐠 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
|
|

−1 2
|
|

−1 …
|
|

⋱ bits(𝑞)

2
|
|

−1
|
|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The only difference is in the last column which is now the bit representation of the modulus 𝑞. Checking
that this is indeed a trapdoor for 𝐠 is left as an exercise. (Hint: for the full rank property, prove that the
determinant of this matrix is 𝑞.)

Sampling 𝐀 together with an Inhomogenous Trapdoor. Sample a uniformly random 𝐁 ∈ ℤ
𝑛×𝑚

∗

𝑞

where 𝑚
∗
= 𝑛 log 𝑞 + 𝜆 (as before). Set

𝐀 = [𝐁||𝐁𝐑 + 𝐆] (over ℤ𝑞)

where 𝐑 ∈ ℤ
𝑚
∗
×𝑚

𝑞
is a uniformly random 0-1 matrix. Notice that

𝐀 ⋅
[

−𝐑

𝐈 ]
= 𝐆 (mod 𝑞)

and since ||𝐑||∞ ≤ 1, we have an inhomogenous trapdoor! Furthermore, 𝐀 is close to random by leftover
hash lemma (as before).

Now, one could stop here and directly use the inhomogenous trapdoor to solve LWE and SIS but we
will go one step further and show how to get a trapdoor for 𝐀.

3



Sampling 𝐀 with a Trapdoor, Finally. First of all, we have

[𝐁||𝐁𝐑 + 𝐆] ⋅
[

−𝐑

𝐈 ]
= 𝐆

Thus,
[𝐁||𝐁𝐑 + 𝐆] ⋅

[

𝐈 −𝐑

𝟎 𝐈 ]
= [𝐁||𝐆]

Finally, multiplying this on the right by
[

𝐈 𝟎

−𝐆
−
(𝐁) 𝐓𝐆 ]

, we get

[𝐁||𝐁𝐑 + 𝐆] ⋅
[

𝐈 −𝐑

𝟎 𝐈 ]
⋅
[

𝐈 𝟎

−𝐆
−
(𝐁) 𝐓𝐆 ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝐓𝐀

= [𝐁||𝐆] ⋅
[

𝐈 𝟎

−𝐆
−
(𝐁) 𝐓𝐆 ]

= 𝟎 (mod 𝑞)

Thus, the lattice trapdoor

𝐓𝐀 =
[

𝐈 + 𝐑𝐆
−
(𝐁) −𝐑𝐓𝐆

−𝐆
−
(𝐁) 𝐓𝐆 ]

We already saw that 𝐀𝐓𝐀 = 𝟎 (mod 𝑞). The 𝓁∞ norm of 𝐓𝐀 is 𝑂(𝑚). Finally, since 𝐓𝐀 is a product of
two full-rank matrices, it is full-rank as well. (It has determinant 𝑞𝑛.)

3 Trapdoor Functions

Definition 3. A family of functions1 𝑛 = {𝑓𝑖 ∶ {0, 1}
𝑛
→ {0, 1}

𝑚
} for some 𝑚 = 𝑚(𝑛) is called a trapdoor

function family if it comes with the following three associated polynomial-time algorithms.

• A probabilistic function generation algorithm that, on input 1𝑛, outputs an index 𝑖 of a function 𝑓𝑖 in
the family as well as a trapdoor 𝑡𝑖.

• A deterministic evaluation algorithm that, on input 𝑖 and 𝑥 ∈ {0, 1}
𝑛, outputs 𝑦. We need that 𝑦 = 𝑓𝑖(𝑥).

• A deterministic inversion algorithm that, on input 𝑖, 𝑡𝑖 and 𝑦 ∈ {0, 1}
𝑚, outputs 𝑥 ∈ {0, 1}

𝑛 or a special
symbol ⊥. We require that if 𝑦 ∈ Image(𝑓𝑖), then 𝑥 is an inverse, namely 𝑓𝑖(𝑥) = 𝑦.

3.1 Injective Trapdoor Function

The function
𝑓𝐀(𝐬, 𝐞) = 𝐬

𝑇
𝐀 + 𝐞

𝑇
(mod 𝑞)

where 𝐀 ∈ ℤ
𝑛

𝑞
, 𝐬 ∈ ℤ

𝑛

𝑞
and 𝐞 ← 𝜒

𝑚 is a one-way family of functions, under LWE. Given the trapdoor 𝐓,
one inverts this as follows.

(𝐬
𝑇
𝐀 + 𝐞

𝑇
)𝐓 = 𝐞

𝑇
𝐓 (mod 𝑞)

Now, since the latter quantity has absolute value at most 𝑞/4, it is 𝐞𝑇𝐓 (over the integers). The mod-𝑞 has
no effect, and this is the key observation. Now, multiplying the latter by 𝐓

−1 (the inverse of 𝐓 over the
reals) recovers 𝐞. Here, it is very important that 𝐓 had full rank over the reals; otherwise, 𝐓−1 would not
exist.

1To be precise, we should be talking about ensemble of such families one for every input length 𝑛. However, we will refrain
from unnecessary notational gymnastics and will take that as understood.

4



3.2 Surjective Trapdoor Function

The function
𝑔𝐀(𝐞) = 𝐀𝐞 (mod 𝑞)

where 𝐀 ∈ ℤ
𝑛×𝑚

𝑞
where 𝑚 > 𝑛 log 𝑞 and 𝐞 ∈ [−𝛽, 𝛽]

𝑚 is a one-way family of functions as well, under SIS,
where 𝛽 = poly(𝑚).

With an inhomogeneous trapdoor, we claim that we can easily invert the function. Indeed, given a
vector 𝐯 ∈ ℤ

𝑛

𝑞
, and an inhomogeneous trapdoor 𝐑, we first compute a bit vector 𝐞′ such that 𝐆𝐞′ = 𝐯 mod 𝑞

as discussed above. Now, we claim that
𝐞 ∶= 𝐑 ⋅ 𝐞

′

is a required inverse. Indeed,
𝐀 ⋅ 𝐑 ⋅ 𝐞

′
= 𝐆 ⋅ 𝐞

′
= 𝐯 (mod 𝑞)

Also ||𝐞||∞ ≤ 𝑚 since each entry of 𝐑 and 𝐞
′ are binary.

4 Digital Signatures

Here is a simple digital signature scheme. (For a definition of digital signatures and what we mean by a
secure digital signature, see Rafael Pass and abhi shelat’s book.)

• The key generation algorithm samples a function together with a trapdoor. This would be 𝐀 and 𝐓.
The public key is 𝐀 and the secret key is 𝐓.

• To sign a message 𝑚, first map it into the range of the function, e.g., by hashing it. That is, compute
𝐯 = 𝐻(𝑚). The signature is an inverse of 𝐯 under the function 𝑔𝐀. That is, a short vector 𝐞 such that
𝐀𝐞 = 𝐯 (mod 𝑞). This is guaranteed by the surjectivity of the function 𝑔𝐀.

• Verification, given a message 𝑚, public key 𝐀 and signature 𝐞, consists of checking that 𝐀𝐞 = 𝐻(𝑚)

(mod 𝑞) and that ||𝐞||∞ ≤ 𝑚
2.

Unforgeability (given no signature queries) reduces to SIS in the random oracle model, i.e., assuming that
𝐻 is a random oracle.

However, given signatures on adversarially chosen messages (in fact, even random messages), this
scheme is broken. The key issue is that there are many inverses of 𝐻(𝑚), and the particular inverse com-
puted using a trapdoor 𝐓 leaks information about 𝐓. Collecting this leakage over sufficiently many (poly-
nomially many) signature queries enables an adversary to find 𝐓, allowing her to forge signatures at will
going forward.

This is most easily seen when the inversion procedure for 𝑔𝐀 uses the inhomogenous trapdoor. Note
that given 𝐯, an adversary can compute 𝐆

−
(𝐯) = 𝐞

′ herself. She now gets a signature

𝜎 = 𝐑 ⋅ 𝐞
′

which gives her one equation on the secret 𝐑. Given about 𝑚 equations, she can solve linear equations
and learn 𝐑.

The situation remains essentially as dire even if you use the trapdoor (as opposed to the inhomogenous
trapdoor). Using rounding vs the nearest plane algorithm does not help either; see the paper of Nguyen

5

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf


and Regev for robust attacks against this signature scheme. The fundamental difficulty seems to stem from
the fact that the inversion procedure is deterministic!

To mitigate the difficulty, we need a special kind of inverter for 𝑔𝐀. The inverter is a “pre-image
sampler”; that is, it is given the trapdoor 𝐓 and produces a “random” pre-image. More precisely, we need
the following distributions to be statistically close (computational indistinguishabilty is fine, but we will
achieve statistical closeness):

(
𝐀 ← ℤ

𝑛×𝑚

𝑞
,𝐞 ← 𝐷ℤ

𝑚
,𝑠 , 𝐯 ∶= 𝐀𝐞 (mod 𝑞)

)

≈𝑠 (𝐀 ← ℤ
𝑛×𝑚

𝑞
, 𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ

𝑛

𝑞
)

That is, the following processes produce statistically close outputs: (a) first sample 𝐞 from a discrete Gaus-
sian, and deterministically set 𝐯 to be 𝐀𝐞 (mod 𝑞); and (b) sample 𝐯 uniformly and use the pre-image
sampler to produce an inverse of 𝐯 under 𝑔𝐀 that is distributed according to the right conditional distribu-
tion. This distribution happens to be the discrete Gaussian over a coset of the lattice, that is,

Λ
⟂

𝐯
(𝐀) ∶= {𝐞 ∈ ℤ

𝑚
∶ 𝐀𝐞 = 𝐯 (mod 𝑞)}

In fact, this not quite enough; we need a multi-sample version of this. That is,

(
𝐀 ← ℤ

𝑛×𝑚

𝑞
,{𝐞𝑖 ← 𝐷ℤ

𝑚
,𝑠 , 𝐯 ∶= 𝐀𝐞 (mod 𝑞)}

poly(𝜆)
𝑖=1

)

≈𝑠 (𝐀 ← ℤ
𝑛×𝑚

𝑞
, {𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ

𝑛

𝑞
}
poly(𝜆)
𝑖=1

)

This is quite cumbersome to work with, so we propose an alternate stronger definition. That is, we
require that for most 𝐀 ← ℤ

𝑛×𝑚

𝑞
and any trapdoor 𝐓 of length bounded by 𝓁 and 𝑠 ≫ 𝓁:

(
𝐞 ← 𝐷ℤ

𝑚
,𝑠 ,𝐯 ∶= 𝐀𝐞 (mod 𝑞)

)

≈𝑠 (𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ
𝑛

𝑞
)

Proof of Security. With the one change that the inverter is replaced by a pre-image sampler, our sig-
nature scheme becomes secure in the random oracle model. We showed the proof in the class.

5 Discrete Gaussian Sampling

Throughout, we will deal with sampling from a zero-centered discrete Gaussian.

5.1 Naı̈ve Sampling

Let us first consider sampling from a discrete Gaussian over the simplest possible lattice, namely the one-
dimensional lattice of integers ℤ. The first idea to sample from the discrete Gaussian 𝐷ℤ,𝑠 is to sample from
a continuous Gaussian 𝑁𝑠 with parameter 𝑠 and round to the nearest integer. Unfortunately, this is not a

6

https://cims.nyu.edu/~regev/papers/gghattack.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf


discrete Gaussian, not even statistically close to it. This is true even if 𝑠 is much larger than the smoothing
parameter. You will show this in the problem set.

For 𝑛-dimensional lattices, this statistical distance degrades with 𝑛 as well making the situation much
worse.

The reader may recall that the first step of Regev’s worst-case to average-case reduction was sampling
from a discrete Gaussian over a lattice for which Regev used the above procedure. However, he could
afford to use an exponential 𝑠 which makes the statistical distance small.

5.2 Sampling Discrete Gaussians over ℤ

So, how do we sample from 𝐷ℤ,𝑠 for polynomial 𝑠? We will show that the general method of rejection
sampling works. Let 𝑍 = [−𝑡 ⋅ 𝑠, 𝑡 ⋅ 𝑠] be a sufficiently large interval, where 𝑡 = 𝜔(

√

log 𝜆). We do the
following:

1. Sample a random integer 𝑧 ← 𝑍 .

2. Output 𝑧 with probability 𝜌𝑠(𝑧) ∶= 𝑒
−𝜋𝑧

2
/𝑠

2 ; else go to step 1 and repeat.

First of all, we will show that the probability that 𝐷ℤ,𝑠 assigns to numbers outside of the interval 𝑍 is
negligible.

Lemma 4. Let 𝑠 ≥ 𝜂𝜀(ℤ) for some 𝜀 = negl(𝜆), and 𝑡 > 0. We have

Pr
𝑥←𝐷ℤ,𝑠

[|𝑥| > 𝑡 ⋅ 𝑠] ≤ 𝑐 ⋅ 𝑒
−𝜋𝑡

2

for some absolute constant 𝑐 > 0.

Consider the probability distribution 𝐷
′

ℤ,𝑠
which assigns probability 𝜌𝑠(𝑥) for all 𝑥 ∈ 𝑍 ∩ ℤ and 0

otherwise. The lemma above shows that 𝐷′

ℤ,𝑠
is close to 𝐷ℤ,𝑠 if 𝑠 is larger than the negl(𝜆)-smoothing

parameter of ℤ, namely 𝜔(

√

log 𝑛), and 𝑡 = 𝜔(

√

log 𝑛).
It is not hard to see that the procedure above samples from the distribution 𝐷

′

ℤ,𝑠
exactly. It remains

to see that it terminates in polynomial time. We show two things which we leave as an exercise: (a) the
probability that 𝑧 sampled in step 1 lies in [−𝑠, 𝑠] is Ω(1/𝑡) and (b) if such a 𝑧 is sampled, it is output with
probability Ω(1). Put together, the expected time for termination is 𝑂(𝑡) = poly(𝜆).

7


	Lattice Trapdoors
	Trapdoor Sampling
	Leftover Hash Lemma
	Sampling a Random A with a Single Trapdoor Vector
	Ajtai-MP Trapdoor Sampling

	Trapdoor Functions
	Injective Trapdoor Function
	Surjective Trapdoor Function

	Digital Signatures
	Discrete Gaussian Sampling
	Naïve Sampling
	Sampling Discrete Gaussians over Z


