
Identity-Based, Attribute-Based and Predicate Encryption
We will start by constructing a digital signature scheme from lattices; then combine it with the dual

Regev encryption scheme to construct an identity-based encryption scheme; then upgrade it to an attribute-
based encryption scheme borrowing ideas from our FHE construction; and finally, a predicate encryption
scheme, if time permits.

1 Digital Signatures

Here is a simple digital signature scheme. (For a definition of digital signatures and what we mean by a
secure digital signature, see Rafael Pass and abhi shelat’s book.)

• The key generation algorithm samples a function together with a trapdoor. This would be 𝐀 and 𝐓.
The public key is 𝐀 and the secret key is 𝐓.

• To sign a message 𝑚, first map it into the range of the function, e.g., by hashing it. That is, compute
𝐯 = 𝐻(𝑚). The signature is an inverse of 𝐯 under the function 𝑔𝐀. That is, a short vector 𝐞 such that
𝐀𝐞 = 𝐯 (mod 𝑞). This is guaranteed by the surjectivity of the function 𝑔𝐀.

• Verification, given a message 𝑚, public key 𝐀 and signature 𝐞, consists of checking that 𝐀𝐞 = 𝐻(𝑚)
(mod 𝑞) and that ||𝐞||∞ ≤ 𝑚2.

Unforgeability (given no signature queries) reduces to SIS in the random oracle model, i.e., assuming that
𝐻 is a random oracle.

However, given signatures on adversarially chosen messages (in fact, even random messages), this
scheme is broken. The key issue is that there are many inverses of 𝐻(𝑚), and the particular inverse com-
puted using a trapdoor 𝐓 leaks information about 𝐓. Collecting this leakage over sufficiently many (poly-
nomially many) signature queries enables an adversary to find 𝐓, allowing her to forge signatures at will
going forward.

This is most easily seen when the inversion procedure for 𝑔𝐀 uses the inhomogenous trapdoor. Note
that given 𝐯, an adversary can compute 𝐆−(𝐯) = 𝐞′ herself. She now gets a signature

𝜎 = 𝐑 ⋅ 𝐞′

which gives her one equation on the secret 𝐑. Given about 𝑚 equations, she can solve linear equations
and learn 𝐑.

The situation remains essentially as dire even if you use the trapdoor (as opposed to the inhomogenous
trapdoor). Using rounding vs the nearest plane algorithm does not help either; see the paper of Nguyen
and Regev for robust attacks against this signature scheme. The fundamental difficulty seems to stem from
the fact that the inversion procedure is deterministic!

To mitigate the difficulty, we need a special kind of inverter for 𝑔𝐀. The inverter is a “pre-image
sampler”; that is, it is given the trapdoor 𝐓 and produces a “random” pre-image. More precisely, we need
the following distributions to be statistically close (computational indistinguishabilty is fine, but we will
achieve statistical closeness):

(𝐀 ← ℤ𝑛×𝑚
𝑞 ,𝐞 ← 𝐷ℤ𝑚,𝑠 , 𝐯 ∶= 𝐀𝐞 (mod 𝑞))

≈𝑠 (𝐀 ← ℤ𝑛×𝑚
𝑞 , 𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ𝑛

𝑞)

1

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf
https://cims.nyu.edu/~regev/papers/gghattack.pdf

That is, the following processes produce statistically close outputs: (a) first sample 𝐞 from a discrete Gaus-
sian, and deterministically set 𝐯 to be 𝐀𝐞 (mod 𝑞); and (b) sample 𝐯 uniformly and use the pre-image
sampler to produce an inverse of 𝐯 under 𝑔𝐀 that is distributed according to the right conditional distribu-
tion. This distribution happens to be the discrete Gaussian over a coset of the lattice, that is,

Λ⟂
𝐯 (𝐀) ∶= {𝐞 ∈ ℤ𝑚 ∶ 𝐀𝐞 = 𝐯 (mod 𝑞)}

In fact, this not quite enough; we need a multi-sample version of this. That is,

(𝐀 ← ℤ𝑛×𝑚
𝑞 ,{𝐞𝑖 ← 𝐷ℤ𝑚,𝑠 , 𝐯 ∶= 𝐀𝐞 (mod 𝑞)}poly(𝜆)𝑖=1)

≈𝑠 (𝐀 ← ℤ𝑛×𝑚
𝑞 , {𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ𝑛

𝑞}
poly(𝜆)
𝑖=1)

This is quite cumbersome to work with, so we propose an alternate stronger definition. That is, we
require that for most 𝐀 ← ℤ𝑛×𝑚

𝑞 and any trapdoor 𝐓 of length bounded by 𝓁 and 𝑠 ≫ 𝓁:

(𝐞 ← 𝐷ℤ𝑚,𝑠 ,𝐯 ∶= 𝐀𝐞 (mod 𝑞))

≈𝑠 (𝐞 ← PreSamp(𝐀, 𝐓, 𝐯), 𝐯 ← ℤ𝑛
𝑞)

Proof of Security. With the one change that the inverter is replaced by a pre-image sampler, our sig-
nature scheme becomes secure in the random oracle model. We showed the proof in the class.

2 Discrete Gaussian Sampling

Throughout, we will deal with sampling from a zero-centered discrete Gaussian.

2.1 Naı̈ve Sampling

Let us first consider sampling from a discrete Gaussian over the simplest possible lattice, namely the one-
dimensional lattice of integersℤ. The first idea to sample from the discrete Gaussian𝐷ℤ,𝑠 is to sample from
a continuous Gaussian 𝑁𝑠 with parameter 𝑠 and round to the nearest integer. Unfortunately, this is not a
discrete Gaussian, not even statistically close to it. This is true even if 𝑠 is much larger than the smoothing
parameter. You will show this in the problem set.

For 𝑛-dimensional lattices, this statistical distance degrades with 𝑛 as well making the situation much
worse.

The reader may recall that the first step of Regev’s worst-case to average-case reduction was sampling
from a discrete Gaussian over a lattice for which Regev used the above procedure. However, he could
afford to use an exponential 𝑠 which makes the statistical distance small.

2.2 Sampling Discrete Gaussians over ℤ

So, how do we sample from 𝐷ℤ,𝑠 for polynomial 𝑠? We will show that the general method of rejection
sampling works. Let 𝑍 = [−𝑡 ⋅ 𝑠, 𝑡 ⋅ 𝑠] be a sufficiently large interval, where 𝑡 = 𝜔(

√
log 𝜆). We do the

following:

2

1. Sample a random integer 𝑧 ← 𝑍 .

2. Output 𝑧 with probability 𝜌𝑠(𝑧) ∶= 𝑒−𝜋𝑧2/𝑠2 ; else go to step 1 and repeat.

First of all, we will show that the probability that 𝐷ℤ,𝑠 assigns to numbers outside of the interval 𝑍 is
negligible.

Lemma 1. Let 𝑠 ≥ 𝜂𝜀(ℤ) for some 𝜀 = negl(𝜆), and 𝑡 > 0. We have

Pr
𝑥←𝐷ℤ,𝑠

[|𝑥| > 𝑡 ⋅ 𝑠] ≤ 𝑐 ⋅ 𝑒−𝜋𝑡
2

for some absolute constant 𝑐 > 0.

Consider the probability distribution 𝐷′
ℤ,𝑠 which assigns probability 𝜌𝑠(𝑥) for all 𝑥 ∈ 𝑍 ∩ ℤ and 0

otherwise. The lemma above shows that 𝐷′
ℤ,𝑠 is close to 𝐷ℤ,𝑠 if 𝑠 is larger than the negl(𝜆)-smoothing

parameter of ℤ, namely 𝜔(
√
log 𝑛), and 𝑡 = 𝜔(

√
log 𝑛).

It is not hard to see that the procedure above samples from the distribution 𝐷′
ℤ,𝑠 exactly. It remains

to see that it terminates in polynomial time. We show two things which we leave as an exercise: (a) the
probability that 𝑧 sampled in step 1 lies in [−𝑠, 𝑠] is Ω(1/𝑡) and (b) if such a 𝑧 is sampled, it is output with
probability Ω(1). Put together, the expected time for termination is 𝑂(𝑡) = poly(𝜆).

2.3 Sampling Discrete Gaussians over lattices: Klein-GPV algorithm

Wedemonstrate the sampler in two dimensions. The generalization to 𝑛 dimensions follows quite naturally.
We will use Figure 1 as a reference.

The lattice (𝐛1, 𝐛2) in the figure can be divided into many cosets of the lattice generated by 𝐛2 alone.
The 𝑖𝑡ℎ coset, for every 𝑖 ∈ ℤ is

𝑖 = {𝑖 ⋅ 𝐛1 + 𝑦 ⋅ 𝐛2 ∶ 𝑦 ∈ ℤ}

Let’s first ask what’s the probability that a sample from the discrete Gaussian 𝐷,𝑠,𝐜 (for some center 𝐜)
falls into the 𝑖𝑡ℎ coset. This is simply the Gaussian mass of 𝑖 divided by the discrete Gaussian mass of the
entire lattice; that is,

Pr[𝑖] =
∑𝐱∈𝑖 𝜌𝑠(𝐱)
∑𝐱∈ 𝜌𝑠(𝐱)

=
∑𝐱∈𝑖 𝑒

−𝜋||𝐱||2/𝑠2

∑𝐱∈ 𝑒−𝜋||𝐱||2/𝑠2
=

∑𝐱∈𝑖 𝑒
−𝜋||𝐱||2/𝑠2

∑𝑖∈ℤ∑𝐱∈𝑖 𝑒−𝜋||𝐱||
2/𝑠2

Now, note that each vector 𝐱 ∈ 𝑖 is
𝐱 = 𝑖 ⋅ 𝐛1 + 𝐱′

where 𝐱′ ∈ (𝐛2). Letting 𝐛1 = 𝐛̃1 + 𝐛||1 be the orthogonal decomposition of 𝐛1 into a component 𝐛||1 in
Span(𝐛2) plus the (Gram Schmidt) orthogonal component 𝐛̃1, lets us write the latter expression as

𝑒−𝜋⋅𝑖2 ⋅||𝐛̃1 ||2/𝑠2 ⋅ ∑𝐱′∈(𝐛1) 𝑒
−𝜋||𝐱′+𝑖⋅𝐛||1 ||2/𝑠2

∑𝑖∈ℤ 𝑒−𝜋⋅𝑖2 ⋅||𝐛̃1 ||2/𝑠2 ⋅ ∑𝐱′∈(𝐛1) 𝑒
−𝜋||𝐱′+𝑖⋅𝐛||1 ||2/𝑠2

The truly key observation here is that the sum in the numerator and each of the inner sums in the denom-
inator are nearly the same, upto negligible factors, as long as 𝑠 is above the smoothing parameter of the
lattice (𝐛1) (‼) See Lemma 10 in Lecture 3.

3

Figure 1: Given a basis (𝐛1, 𝐛2) of the lattice in the picture, and a Gaussian standard deviation parameter
𝑠, the goal is to sample from a discrete Gaussian over (𝐛1, 𝐛2) with parameter 𝑠.

This vastly simplifies the expression to

𝑒−𝜋⋅𝑖2 ⋅||𝐛̃1 ||2/𝑠2

∑𝑖∈ℤ 𝑒−𝜋⋅𝑖2 ⋅||𝐛̃1 ||2/𝑠2

which is simply a one-dimensional discrete Gaussian mass of the number 𝑖 ⋅ ||𝐛̃1||2 on a lattice generated by
multiples of 𝐛̃1 w.r.t. a Gaussian parameter 𝑠.

As we saw above, in the algorithm for sampling a discrete Gaussian over ℤ, we can sample this effi-
ciently as long as

𝑠 ≫ ||𝐛̃1|| ⋅ 𝜔(
√
log 𝑛)

Once we sample the right coset of the lattice, i.e. the right 𝑖, this now recursively reduces to the
problem of sampling from a (non-zero-centered, in general) discrete Gaussian on a lattice one dimension
smaller. Keep going! Sampling will work as long as

𝑠 ≫ max
𝑖∈[𝑛]

(||𝐛̃𝑖||) ⋅ 𝜔(
√
log 𝑛)

This is the Klein/GPV Gaussian sampling algorithm.

4

3 Identity-based Encryption

Let us think first about deploying a public-key encryption scheme on a large scale. We need a mechanism
to maintain a directory of (𝐼𝐷, 𝑃𝐾) pairs where 𝐼𝐷 is the identifying information of a person, say Alice’s
e-mail address or phone number, that other people use to send her a message. Then, when you wish to
send an email to Alice, you look up her public key in the directory and encrypt to the public key.

The directory, which forms part of a public-key infrastructure (PKI), has to be authenticated and trusted.
For example, an adversary should not be able to insert an entry of the form (𝐼𝐷𝐴, 𝑃𝐾 ′

𝐴), where she pre-
sumably knows 𝑆𝐾 ′

𝐴, into the directory.
Identity-based encryption (IBE) solves the problem of having to maintain an authenticated PKI. In an

IBE:

• there is a master authority who generates a master public key 𝑀𝑃𝐾 together with a master secret
key 𝑀𝑆𝐾 , and publishes the 𝑀𝑃𝐾 .

• To encrypt a message 𝜇, one needs to know 𝑀𝑃𝐾 and the identity 𝐼𝐷 (e.g., the e-mail address) of
the recipient.

• Each user goes to the master authority and receives 𝑆𝐾𝐼𝐷 after authenticating that they indeed are
the owner of ID.

• Using 𝑆𝐾𝐼𝐷, the user can decrypt ciphertexts encrypted to the identity 𝐼𝐷.

Let us now define the syntax of an IBE, formalizing the discussion above.

• Setup(1𝜆): is a probabilistic algorithm that generates a master public key 𝑀𝑃𝐾 and a master secret
key 𝑀𝑆𝐾 .

• Enc(𝑀𝑃𝐾, 𝐼𝐷, 𝜇): is a probabilistic algorithm that generates a ciphertext 𝐶 of a message 𝜇 (for sim-
plicity, we will encrypt bits but that is largely irrelevant) w.r.t. identity 𝐼𝐷.

• KeyGen(𝑀𝑆𝐾, 𝐼𝐷 ∈ {0, 1}∗): is a probabilistic algorithm that generates a secret key 𝑆𝐾𝐼𝐷.

• Dec(𝑆𝐾𝐼𝐷, 𝐶): is a deterministic decryption algorithm.

Youmay have noticed that themaster authority can decrypt all the ciphertexts generated in this system
and is therefore very powerful.

Application: Access Delegation across Space. I can act as the master authority and use an IBE to
delegate decryption of certain subsets of messages to other people (e.g., my administative assistant). For
example, all messages are tagged with a keyword 𝐼𝐷 = CS294, and I can issue the 𝑆𝐾𝐼𝐷 to my assistant
that lets him decrypt only those messages tagged with 𝐼𝐷.

Application: Access Delegation across Time. Imagine that I go on (virtual) vacation to Cancun and
want to take my laptop. However, I am worried that it will be stolen. So, I ask folks encrypting messages
to me to use an IBE and tag the messages with an 𝐼𝐷 which is the current date. This allows me to generate
a small set of secret keys, corresponding to the days that I am away, which allows me to decrypt only the
corresponding small subset of messages. IBE lets me enjoy my vacation worry-free!

5

Application: Chosen-Ciphertext Security. IBE can be used in surprisingly non-trivial ways to con-
struct other cryptographic systems, e.g., chosen ciphertext secure public-key encryption schemes and dig-
ital signature schemes (that we will describe later in this lecture).

Constructions. The first constructions used bilinear maps on elliptic curves (Boneh-Franklin’00) and
quadratic residuosity (Cocks’00). We will present the third IBE scheme from the LWE assumption (Gentry-
Peikert-Vaikuntanathan’08) and several variants today. Recently, Garg and Dottling have come up with a
completely different scheme that relies on Diffie-Hellman groups (no need for bilinear maps!) Following
up, Brakerski-Lombardi-Segev-Vaikuntanathan came up with a scheme based on learning parity with very
low noise.

3.1 Definitions of Security

We imagine a PPT adversary that plays the following game with a challenger. This captures the require-
ment that encryptions relative to 𝐼𝐷∗ should be secure even to an adversary that can obtain secret keys
for polynomially many different identities 𝐼𝐷 ≠ 𝐼𝐷∗. This is called the adaptive security or full security def-
inition. The weaker selective security definition restricts the adversary to pick the identity it is attacking
at the very beginning of the game (before it receives MPK).

Selectively secure IBE schemes can be generically proven to be fully secure under a sub-exponentially
stronger assumption. Therefore, we will not attempt to optimize the strength of the assumption and focus
on selective security for this lecture.

3.2 IBE=Signatures+Public-Key Encryption

Moni Naor observed that any IBE scheme gives us for free a digital signature scheme. The intuition is
that the identity secret key 𝑆𝐾𝐼𝐷 can act as a signature for the “message” 𝐼𝐷. How so?

• It can be generated using the master secret key 𝑀𝑆𝐾 (which will serve as the secret signing key.)

• It can be verified using the master public key 𝑀𝑃𝐾 – indeed, encrypt a bunch of random messages
using 𝑀𝑃𝐾 and attempt to use the “signature” to decrypt. If decryption produces the correct mes-
sage, accept the signature. Otherwise, reject.

• after receiving signatures 𝑆𝐾𝐼𝐷 on polynomially many messages 𝐼𝐷, being able to produce the “sig-
nature” on a different message 𝐼𝐷∗ constitutes a signature forgery; but being able to do that breaks
IBE security. Conversely, in a signature scheme derived from a secure IBE scheme, it should be
infeasible to do that.

Indeed, turning this around, we will use the GPV signature scheme we saw in the last class as a starting
point to build an IBE scheme.

4 Recap: GPV Signatures

• KeyGen(1𝜆): Generate a random matrix 𝐀 ∈ ℤ𝑛×𝑚
𝑞 and its trapdoor 𝐓 by running TrapSamp.

• Sign(𝜇): first compute 𝐯 = 𝐻(𝜇) ∈ ℤ𝑛
𝑞 where𝐻 is treated as a random oracle in the analysis. Then, use

Gaussian sampling (via the GPV algorithm) to compute a Gaussian solution 𝐞 ∈ ℤ𝑚 to the equation

𝐀𝐞 = 𝐯 (mod 𝑞)

6

Let Λ⟂(𝐀) denote the lattice
{𝐞 ∈ ℤ𝑚 ∶ 𝐀𝐞 = 𝟎 (mod 𝑞)}

and let Λ⟂
𝐯 (𝐀) denote a coset of Λ⟂(𝐀) indexed by 𝐯. That is,

Λ⟂
𝐯 (𝐀) = {𝐞 ∈ ℤ𝑚 ∶ 𝐀𝐞 = 𝐯 (mod 𝑞)}

Note that the distribution of 𝐞 is 𝐷Λ⟂
𝐯 (𝐀),𝜎 where 𝜎 ≈ ||𝐓|| ⋅ 𝜔(

√
log 𝑛). (The 𝜔(

√
log 𝑛) is so that the

sampling algorithm can achieve negligible statistical distance from a true discrete Gaussian.)

• Verify(𝐀, 𝐞, 𝜇): check that (1) 𝐞 is short, that is ||𝐞|| ≤ ||𝑇 || ⋅ 𝜔(
√
𝑛 log 𝑛); and (2) 𝐀𝐞 = 𝐻(𝜇) (mod 𝑞).

The key question now is how to we build an encryption algorithm whose public key is 𝐯 (which will
be treated as 𝐻(𝐼𝐷)) and the corresponding private key is 𝐞 as above. Indeed, we have seen precisely such
a scheme in the first lecture (cf. lecture notes) called the GPV encryption scheme or more commonly, the
dual-Regev encryption scheme.

But before we get there, the scheme as stated above is insecure – do you see why? Bonus points if you
see how to fix it.

7

5 The Dual Regev Encryption Scheme

Let’s recall the dual Regev scheme we saw in the first lecture (notes).

• KeyGen: the public key is an LWE matrix 𝐀 ∈ ℤ𝑛×𝑚
𝑞 and a random vector 𝐯 ∈ ℤ𝑛

𝑞 . The private key is
a short vector 𝐞 such that 𝐀𝐞 = 𝐯 (mod 𝑞).

pk = (𝐀, 𝐯) sk = 𝐞

• Enc(pk, 𝜇): pick an LWE secret 𝐬 ∈ ℤ𝑛
𝑞 and output

(𝐜𝑇1 , 𝑐2) ∶= (𝐬
𝑇𝐀 + 𝐱𝑇 , 𝐬𝑇𝐯 + 𝑥′ + 𝑚⌊𝑞/2⌋)

as the ciphertext. We will call this ciphertext the dual Regev encryption of 𝜇 relative to 𝐀 and 𝐯.

• Dec(sk, (𝐜𝑇1 , 𝑐2)): Compute
𝜇̃ ∶= Round(𝑐2 − 𝐜𝑇1 𝐞)

where Round(𝛼) outputs 1 if |𝛼 − 𝑞/2| ≤ 𝑞/4 and 0 otherwise.

We will leave the correctness and security as an exercise. (Alternatively, look at lecture 1.)

6 The GPV IBE Scheme

• Setup(1𝜆): Pick the right 𝑛 = 𝑛(𝜆) for a security level of 𝜆 bits. Generate a matrix 𝐀 ∈ ℤ𝑛×𝑚
𝑞 and its

trapdoor 𝐓 ∈ ℤ𝑚×𝑚 by running the trapdoor sampling algorithm.

(𝐀, 𝐓) ← TrapSamp(1𝑛)

(The parameters 𝑚 and 𝑞 are picked internally by the trapdoor sampling algorithm.) The master
public key is mpk = 𝐀 and the master secret key is msk = 𝐓.

• KeyGen(msk, 𝐼𝐷): Compute 𝐯 ∶= 𝐻(𝐼𝐷) ∈ ℤ𝑛
𝑞 where 𝐻 ∶ {0, 1}∗ → ℤ𝑛

𝑞 is a hash function (which, in
the security analysis, will be treated as a random oracle.) Generate a short vector

𝐞 ← DGSamp(𝐀, 𝐓, 𝐯)

by running the discrete Gaussian sampling algorithm. Recall that 𝐀𝐞 = 𝐯 (mod 𝑞). Output the
secret key 𝑠𝑘𝐼𝐷 = 𝐞.

• Enc(mpk, 𝐼𝐷, 𝜇): Run the dual Regev encryption algorithm with pk ∶= (𝐀, 𝐯 = 𝐻(𝐼𝐷)) and message
𝜇 and output the resulting ciphertext.

• Dec(sk𝐼𝐷, 𝑐): Run the dual Regev decryption algorithm with sk ∶= sk𝐼𝐷 = 𝐞.

8

6.1 Proof of (Full) Security

We will come up with alternate algorithms called Setup∗,KeyGen∗ and Enc∗ (Dec∗ will be the same as Dec)
which the challenger will run. Our goal will be to show that (1) the adversary cannot distinguish between
the challenger running Algorithm vs Algorithm∗ and (2) Algorithms∗ do not need the master secret key
and moreover, a challenger using Algorithm∗ can use a successful adversary to break LWE.

A crucial advantage of Algorithm∗ for the GPV scheme is that it can use the programmability of the
random oracle as we will see below. We will for simplicity first create algorithms for the selective security
game.

• Setup∗(𝐼𝐷∗, 1𝜆): Sample random 𝐀∗ which forms the 𝑀𝑃𝐾∗ (no need for trapdoor).

• Hash∗(𝐼𝐷): Set 𝐻(𝐼𝐷∗) = 𝐯∗, a random vector in ℤ𝑛
𝑞 . For all other 𝐼𝐷s, set 𝐻(𝐼𝐷) = 𝐀∗𝐞𝐼𝐷 where

𝐞𝐼𝐷 is chosen from a Gaussian. Remember 𝐞𝐼𝐷.

• KeyGen∗(𝐼𝐷): We know that 𝐼𝐷 ≠ 𝐼𝐷∗. So, we know the 𝐞𝐼𝐷 by construction! This is a consequence
of working in the random oracle model!

• Enc∗(𝑀𝑃𝐾∗, 𝐼𝐷∗, 𝜇): return the dual Regev encryption of 𝜇 relative to 𝐀∗ and 𝐯∗.

The Algorithm∗ produce the same distribution as the original algorithms. Thus, an adversary will break
the challenge ciphertext when interacting with Algorithm∗ just as well as with Algorithms. By embedding
the dual-Regev challenge matrix 𝐀 as the master public key and the dual-Regev public key 𝐯∗ as the hash
of 𝐼𝐷∗, we can easily turn the IBE adversary into an attack against the dual Regev public key encryption
scheme.

A Note on Full Security. Since Setup∗ does not know 𝐼𝐷∗, it guesses which of the (polynomially many)
hash queries will be for 𝐼𝐷∗. (1) any adversary that succeeds has to know 𝐻(𝐼𝐷∗) which it can only find
out by making a hash query; and (2) if the guess is correct (happens with probability 1/𝑄) we can translate
an IBE breaker into a dual-Regev breaker just as above.

7 The CHKP IBE Scheme (Advanced Material: Not Covered in Class)

The CHKP Trick: Trapdoor Extension.
Given the trapdoor for a matrix 𝐀, can you generate a trapdoor for [𝐀||𝐁] where 𝐁 is an arbitrary matrix?

7.1 The Scheme

• Setup(1𝜆): Pick the right 𝑛 = 𝑛(𝜆) for a security level of 𝜆 bits. Generate matrices

𝐀1,0, 𝐀1,1, … , 𝐀𝓁,0, 𝐀𝓁,1 ∈ ℤ𝑛×𝑚
𝑞

where 𝓁 is the length of the identities. The master public key is

mpk = (𝐀𝑖,𝑏)𝑖∈[𝓁],𝑏∈{0,1}, 𝐯

where 𝐯 ∈ ℤ𝑛
𝑞 is a random vector, and the master secret key is

msk = (𝐓𝐀0 , 𝐓𝐀1)

We will never use the trapdoors for the other matrices (except in the security proof.)

9

• KeyGen(msk, 𝐼𝐷 ∈ {0, 1}𝓁): Let

𝐀𝐼𝐷 ∶= [𝐀1,𝐼𝐷1 ||𝐀2,𝐼𝐷2 || … ||𝐀𝓁,𝐼𝐷𝓁]

where 𝐼𝐷1, … , 𝐼𝐷𝓁 are the bits of 𝐼𝐷. Generate a short vector 𝐞 ← DGSamp(𝐀𝐼𝐷, 𝐓𝐀𝐼𝐷 , 𝐯) by running
the discrete Gaussian sampling algorithm. Recall that 𝐀𝐼𝐷 ⋅ 𝐞 = 𝐯 (mod 𝑞). Output the secret key
𝑠𝑘𝐼𝐷 = 𝐞.

• Enc(mpk, 𝐼𝐷, 𝜇): Run the dual Regev encryption algorithm with pk ∶= (𝐀𝐼𝐷, 𝐯) and message 𝜇 and
output the resulting ciphertext.

• Dec(sk𝐼𝐷, 𝑐): Run the dual Regev decryption algorithm with sk ∶= sk𝐼𝐷 = 𝐞.

7.2 Proof of (Selective) Security

As before, we will come up with alternate algorithms called Setup∗,KeyGen∗ and Enc∗ (Dec∗ will be the
same as Dec) which the challenger will run. We will not be able to use random oracles here.

• Setup∗(𝐼𝐷∗, 1𝜆): sample random 𝐯∗. sample 𝓁 random matrices 𝐁1, … , 𝐁𝓁 and set

𝐀𝑖,𝐼𝐷∗
𝑖
= 𝐁𝑖

sample 𝓁 matrices 𝐁′
1, … , 𝐁′

𝓁 together with their trapdoors and set

𝐀𝑖,1−𝐼𝐷∗
𝑖
= 𝐁′

𝑖

𝑀𝑃𝐾∗ consists of all the 𝐀𝑖,𝑏 and 𝐯∗. 𝑀𝑆𝐾∗ consists of the trapdoors of all 𝐀𝑖,1−𝐼𝐷∗
𝑖
.

• KeyGen∗(𝐼𝐷): We know that 𝐼𝐷 ≠ 𝐼𝐷∗. Therefore, I know the trapdoor of the matrix

𝐀𝐼𝐷 ∶= [𝐀1,𝐼𝐷1 || … ||𝐀𝓁,𝐼𝐷𝓁]

(do you see why?)

• Enc∗(𝑀𝑃𝐾∗, 𝐼𝐷∗, 𝜇): return the dual Regev encryption of 𝜇 relative to 𝐀𝐼𝐷∗ and 𝐯∗. (note that𝑀𝑆𝐾∗

does not tell us anything about a trapdoor for 𝐀𝐼𝐷∗ .)

One can also prove full security with a more sophisticated proof. In one sentence, the idea is to set
up 𝐀𝑖,𝑏 so that Algorithm∗ can generate secret keys for all the 𝑄 secret key queries and yet not be able to
generate the secret key for 𝐼𝐷∗.

7.3 CHKP: Pros and Cons

• PLUS: the scheme is secure without resorting to the random oracle model.

• MINUS: the public parameters are rather large, namely 𝑂(𝑛𝑚 log 𝑞 ⋅ 𝓁) as opposed to GPV where it
is 𝑂(𝑛𝑚 log 𝑞). Consequently, also ciphertexts are large.

• PLUS: While we only showed selective security, one can augment the scheme to be adaptively (fully)
secure.

• PLUS: The scheme naturally extends to a hierarchical IBE scheme, described next.

10

7.4 A Brief Note on Hierarchical IBE

Think of hierarchies in an organization. The CEO (the master key generator) can delegate access to the VP
of Engineering who can in turn delegate to programmers and so forth (but not the other way round). In a
hierarchical IBE, one can generate 𝑆𝐾𝐼𝐷 using𝑀𝑆𝐾 ; in turn, the owner of 𝑆𝐾𝐼𝐷 can generate 𝑆𝐾𝐼𝐷||𝐼𝐷′ etc.

The CHKP scheme has a natural hierarchical structure. Namely, if you know the trapdoor for 𝐀𝐼𝐷, you
can generate a trapdoor for 𝐀𝐼𝐷||𝐼𝐷′ = [𝐀𝐼𝐷||𝐀𝐼𝐷′]. Constructing a HIBE scheme building off of this idea is
left as an exercise.

8 The ABB IBE Scheme(Advanced Material: Not Covered in Class)

The ABB Trick: Punctured Trapdoors.
Given the trapdoor for a matrix 𝐀0, a matrix 𝐑 with small entries, and a trapdoor for 𝐆, can you generate
a trapdoor for

[𝐀0||𝐀0𝐑 + 𝛼 ⋅ 𝐆]

for an arbitrary integer 𝛼 ≠ 0 (mod 𝑞)?

How about for 𝛼 = 0 (mod 𝑞), that is, [𝐀0||𝐀0𝐑]?

8.1 The Scheme

• Setup(1𝜆): Pick the right 𝑛 = 𝑛(𝜆) for a security level of 𝜆 bits. Generate matrices

𝐀0, 𝐀1 ∈ ℤ𝑛×𝑚
𝑞

The master public key is
mpk = 𝐀0, 𝐀1, 𝐯

where 𝐯 ∈ ℤ𝑛
𝑞 is a random vector, and the master secret key is

msk = 𝐓𝐀0

We will never use the trapdoor for 𝐀1.

• KeyGen(msk, 𝐼𝐷 ∈ {0, 1}𝓁): Let ℎ be a collision-resistant hash function that maps identities to ℤ∗
𝑞 .

Define
𝐀𝐼𝐷 ∶= [𝐀0||𝐀1 + ℎ(𝐼𝐷) ⋅ 𝐆]

where 𝐆 is the gadget matrix. Note that by trapdoor extension, KeyGen knows a trapdoor for 𝐀𝐼𝐷
for any 𝐼𝐷.
Generate a short vector 𝐞 ← DGSamp(𝐀𝐼𝐷, 𝐓𝐀𝐼𝐷 , 𝐯) by running the discrete Gaussian sampling algo-
rithm. Recall that 𝐀𝐼𝐷 ⋅ 𝐞 = 𝐯 (mod 𝑞). Output the secret key 𝑠𝑘𝐼𝐷 = 𝐞.

• Enc(mpk, 𝐼𝐷, 𝜇): Run the dual Regev encryption algorithm with pk ∶= (𝐀𝐼𝐷, 𝐯) and message 𝜇 and
output the resulting ciphertext.

• Dec(sk𝐼𝐷, 𝑐): Run the dual Regev decryption algorithm with sk ∶= sk𝐼𝐷 = 𝐞.

11

8.2 ABB: Proof of Selective Security

As before, we will come up with a bunch of alternate algorithms called Setup∗,KeyGen∗ and Enc∗ (Dec∗ will
be the same as Dec) which the challenger will run. We will not be able to use random oracles here either.

• Setup∗(𝐼𝐷∗, 1𝜆): sample random 𝐯∗. sample a random matrix 𝐀0 and a matrix 𝐑 with small entries.
Set

𝐀1 ∶= [𝐀0||𝐀0𝐑 − ℎ(𝐼𝐷∗)𝐆]

𝑀𝑃𝐾∗ consists of 𝐀0, 𝐀1 and 𝐯∗. 𝑀𝑆𝐾∗ consists of 𝐑 (and the trapdoor for 𝐆.)

• KeyGen∗(𝐼𝐷): We know that 𝐼𝐷 ≠ 𝐼𝐷∗. Therefore, I know the trapdoor of the matrix

𝐀𝐼𝐷 ∶= [𝐀0||𝐀1 + ℎ(𝐼𝐷)𝐆] = [𝐀0||𝐀0𝐑 + (ℎ(𝐼𝐷) − ℎ(𝐼𝐷∗)𝐆]

(do you see why?)

• Enc∗(𝑀𝑃𝐾∗, 𝐼𝐷∗, 𝜇): given a dual Regev encryption of 𝜇 relative to 𝐀0 and 𝐯∗, compute a dual Regev
encryption of 𝜇 relative to

𝐀𝐼𝐷∗ = [𝐀0||(𝐀0𝐑 − ℎ(𝐼𝐷∗)𝐆) + ℎ(𝐼𝐷∗)𝐆] = [𝐀0||𝐀0𝐑]

and 𝐯∗. (do you see how to do this?)

8.3 ABB: Pros and Cons

• PLUS: the scheme is secure without resorting to the random oracle model.

• PLUS: the public parameters and ciphertexts are as small as GPV, namely 𝑂(𝑛𝑚 log 𝑞).

• PLUS: Can be extended to full security.

• PLUS: Extensible to hierarchical IBE. A different ABB paper uses additional techniques to construct
a “better” HIBE (where the lattice dimension stays the same regardless of the number of levels of
delegation).

9 Application: Chosen Ciphertext Secure Public-key Encryption (Not
Covered in Class)

We will now show a very simple construction of a chosen ciphertext secure (CCA2-secure) public-key
encryption scheme from IBE. This is due to Canetti, Halevi and Katz [?]. In fact, here we will describe a
solution for the weaker notion of CCA1-security.

But first, the definition of CCA1-security. In the CCA1 game, the adversary gets the public-key 𝑃𝐾 of
the encryption scheme, and can ask to get polynomially many ciphertexts decrypted. That is, a challenger
will, on input 𝑐, run Dec(𝑆𝐾, 𝑐) and return the answer to the adversary. Note that 𝑐 need not be distributed
like an honestly generated ciphertext, and may not even live in the range of the encryption algorithm (i.e.,
may not be a valid ciphertext). Eventually, the adversary gets an encryption of a random bit 𝑏 under 𝑃𝐾
and is asked to guess 𝑏 . CCA1 security requires that no PPT adversary can guess 𝑏 with probability better
than 1/2 + negl(𝜆).

Here is the construction.

12

• KeyGen(1𝜆): run IBE.Setup(1𝜆) to get an 𝑀𝑃𝐾𝐼𝐵𝐸 and an 𝑀𝑆𝐾𝐼𝐵𝐸 . The public key 𝑃𝐾 of the CCA
scheme is 𝑀𝑃𝐾𝐼𝐵𝐸 and the secret key 𝑆𝐾 is 𝑀𝑆𝐾𝐼𝐵𝐸 .

• Enc(𝑃𝐾, 𝜇): pick a random string 𝐼𝐷. Run IBE.Enc(𝑃𝐾 = 𝑀𝑃𝐾𝐼𝐵𝐸 , 𝐼𝐷, 𝜇) and output 𝐼𝐷 together
with the resulting ciphertext.

• Dec(𝑆𝐾, (𝐼𝐷, 𝑐)): use 𝑆𝐾 = 𝑀𝑆𝐾𝐼𝐵𝐸 to create 𝑆𝐾𝐼𝐷 and run the IBE decryption algorithm 𝜇 =
IBE.Dec(𝑆𝐾𝐼𝐷, 𝑐).

The CCA security proof is super simple. The intuition?

• the decryption algorithm only uses 𝑆𝐾𝐼𝐷 (and not the 𝑀𝑆𝐾 per se) and

• the identity in the challenge ciphertext is random and hence different w.h.p. from the (adversarially
chosen) identities in all the decryption queries.

Put together, IBE security should say that breaking the security of the challenge ciphertext is hard.

10 Registration-based Encryption (Advanced Material: Not Covered in
Class)

We will say just a few words about RBE here. Recall from the beginning of the lecture that a major
disadvantage of IBE is the power of the master key authority to decrypt all ciphertexts.

A completely orthogonal approach which does not have this problem starts from the following straw-
man scheme: the master public key, curated by the authority, is the concatenation of all the users’ public
keys… Of course, this leads us back to exactly the PKI problem we wanted to solve. However, it is possible
that the authority can publish a short digest of the concatenation of all public keys, which is nevertheless
good enough for encryption (although it should not be clear exactly how yet!)

It turns out that this idea can be brought to fruition using the methodology of deferred encryption due
to Garg et al. We refer the reader to the papers [?, ?]. The construction proceeds in a completely different
way from everything we saw today, and is quite inefficient. An open problem is to come up with an RBE
that is as efficient as (or more efficient than!) the IBE schemes we saw here.

11 Onto Attribute-based Encryption: The Key Lattice Equation

Let us abstract out the mathematics behind GSW into a key lattice equation which will guide us through
constructing the rest of the primitives in this lecture, in particular an attribute-based encryption (ABE)
scheme.

Recall the approximate eigenvector relation:

𝐬𝑇𝐀𝑖 ≈ 𝜇𝑖𝐬𝑇𝐆

and rewrite it as
𝐬𝑇 (𝐀𝑖 − 𝜇𝑖𝐆) ≈ 𝟎 (1)

Let 𝐀𝑓 be the homomorphically evaluated ciphertext for a function 𝑓 . We know that

𝐬𝑇𝐀𝑓 ≈ 𝑓 (𝝁)𝐬𝑇𝐆

13

or
𝐬𝑇 (𝐀𝑓 − 𝑓 (𝝁)𝐆) ≈ 𝟎 (2)

We will generalize this to arbitrary matrices 𝐀1, … , 𝐀𝓁 – not necessarily ones that share the same
eigenvector.

First, we know that𝐀𝑓 is a function of𝐀1, … , 𝐀𝓁 and 𝑓 (but not 𝜇1, … , 𝜇𝓁). Henceforth, when we say𝐀𝑓 ,
we will mean a matrix obtained by the GSW homomorphic evaluation procedure. (That is, homomorphic
addition of two matrices is matrix addition; homomorphic multiplication is matrix multiplication after
bit-decomposing the second matrix).

Second, and very crucially, we can show that for any sequence of matrices 𝐀1, … , 𝐀𝓁,

[𝐀1 − 𝜇1𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆] 𝐇𝑓 ,𝝁 = 𝐀𝑓 − 𝑓 (𝝁)𝐆

where 𝐇𝑓 ,𝝁 is a matrix with small coefficients. We call this the key lattice equation.
To see this for addition, notice that

[𝐀1 − 𝜇1𝐆||𝐀2 − 𝜇2𝐆] [
𝐈
𝐈]

⏟⏞⏞⏞⏟⏞⏞⏞⏟
𝐇+,𝜇1,𝜇2

= 𝐀1 + 𝐀2 − (𝜇1 + 𝜇2)𝐆 = 𝐀+ − (𝜇1 + 𝜇2)𝐆

and for multipication,

[𝐀1 − 𝜇1𝐆||𝐀2 − 𝜇2𝐆] [
𝐆−(𝐀2)
𝜇1𝐈]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐇×,𝜇1,𝜇2

= 𝐀1𝐆−(𝐀2) − 𝜇1𝜇2𝐆 = 𝐀× − 𝜇1𝜇2𝐆

By composition, we get that

[𝐀1 − 𝜇1𝐆||𝐀2 − 𝜇2𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆] 𝐇𝑓 ,𝝁 = 𝐀𝑓 − 𝑓 (𝝁)𝐆

where 𝐇𝑓 ,𝜇 is a matrix with small entries (roughly proportional to 𝑚𝑂(𝑑) where 𝑑 is the circuit depth of 𝑓).
An Advanced Note: Given arbitrary matrices 𝐀𝑖 and 𝐀𝑓 , there exists such a small matrix 𝐇; but if 𝐀𝑓

is arbitrary, it is hard to find.
Let’s re-derive FHE from the key equation:

• The ciphertexts are the matrices 𝐀𝑖 and we picked them such that

𝐬𝑇𝐀 ≈ 𝜇𝐬𝑇𝐆

• Homomorphic evaluation is computing 𝐀𝑓 starting from 𝐀1, … , 𝐀𝓁.

• Correctness of homomorphic eval follows from the key equation: We know that

𝐬𝑇 [𝐀1 − 𝜇1𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆] ≈ 𝟎

by the equation above that characterizes ciphertexts. Therefore, by the key equation,

𝐬𝑇 [𝐀𝑓 − 𝑓 (𝝁)𝐆] = 𝐬𝑇 [𝐀1 − 𝜇1𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆] 𝐇𝑓 ,𝝁 ≈ 𝟎

as well meaning that 𝐀𝑓 is an encryption of 𝑓 (𝝁). Note that no one needs to know or compute the
matrix 𝐇; it only appears in the analysis.

14

12 Attribute-based Encryption

Attribute-based encryption (ABE) generalizes IBE in the following way.

• Setup produces 𝑀𝑃𝐾,𝑀𝑆𝐾 .

• Enc uses 𝑀𝑃𝐾 to encrypt a message 𝑚 relative to attributes (𝜇1, … , 𝜇𝓁) ∈ {0, 1}𝓁.

(In an IBE scheme, 𝝁 = 𝐼𝐷.)

• KeyGen uses 𝑀𝑆𝐾 to generate a secret key 𝑆𝐾𝑓 for a given Boolean function 𝑓 ∶ {0, 1}𝓁 → {0, 1}.

(IBE is the same as ABE where 𝑓 is restricted to be the point (delta) function 𝑓𝐼𝐷′(𝐼𝐷) = 1 iff 𝐼𝐷 = 𝐼𝐷′.)

• Dec gets 𝝁 (attributes are in the clear) and uses 𝑆𝐾𝑓 to decrypt a ciphertext 𝐶 if 𝑓 (𝝁) = 1 (true). If
𝑓 (𝝁) = 0, Dec simply outputs ⊥.

Here is an ABE scheme (called the BGG+ scheme) using the key equation. It’s best to view this as a
generalization of the Agrawal-Boneh-Boyen IBE scheme.

• KeyGen outputs matrices 𝐀,𝐀1, … , 𝐀𝓁 and a vector 𝐯 and these form the 𝑀𝑃𝐾 . The 𝑀𝑆𝐾 is the
trapdoor for 𝐀.

• Enc computes
𝐬𝑇 [𝐀||𝐀1 − 𝜇1𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆]

(plus error, of course, and we will consider that understood.) Finally, the message is encrypted as
𝐬𝑇𝐯 + 𝑒 + 𝑚⌊𝑞/2⌋.

• Let’s see how Dec might work. You (and in fact anyone) can compute

𝐬𝑇 [𝐀||𝐀1 − 𝜇1𝐆|| … ||𝐀𝓁 − 𝜇𝓁𝐆] [
𝐈 𝟎
𝟎 𝐇𝑓 ,𝝁] = 𝐬𝑇 [𝐀||𝐀𝑓 − 𝑓 (𝝁)𝐆]

using the key equation.
If you had a short 𝐫 that maps [𝐀||𝐀𝑓 − 𝐆] to 𝐯, that is

[𝐀||𝐀𝑓 − 𝐆] 𝐫 = 𝐯

you can decrypt and find 𝑚. (Can you fill in the blanks?)

Two notes:

• The security definition mirrors IBE exactly, and the security proof of this scheme mirrors that of the
ABB IBE scheme that we did in the last lecture. I will leave it to you as an exercise. The reference is
the work of Boneh et al., Eurocrypt 2014.

• One might wonder if the attributes 𝝁 need to be revealed. The answer is “NO”, in fact one can con-
struct an attribute-hiding ABE scheme (also called a predicate encryption scheme). There are two
flavors of security of such a scheme, the weaker one can be realized using LWE (Gorbunov, Vaikun-
tanathan andWee, Crypto 2015) and the stronger one implies indistinguishability obfuscation, a very
powerful cryptographic primitive which we don’t know how to construct from LWE yet. More in
the next lecture.

15

	Digital Signatures
	Discrete Gaussian Sampling
	Naïve Sampling
	Sampling Discrete Gaussians over Z
	Sampling Discrete Gaussians over lattices: Klein-GPV algorithm

	Identity-based Encryption
	Definitions of Security
	IBE=Signatures+Public-Key Encryption

	Recap: GPV Signatures
	The Dual Regev Encryption Scheme
	The GPV IBE Scheme
	Proof of (Full) Security

	The CHKP IBE Scheme (Advanced Material: Not Covered in Class)
	The Scheme
	Proof of (Selective) Security
	CHKP: Pros and Cons
	A Brief Note on Hierarchical IBE

	The ABB IBE Scheme(Advanced Material: Not Covered in Class)
	The Scheme
	ABB: Proof of Selective Security
	ABB: Pros and Cons

	Application: Chosen Ciphertext Secure Public-key Encryption (Not Covered in Class)
	Registration-based Encryption (Advanced Material: Not Covered in Class)
	Onto Attribute-based Encryption: The Key Lattice Equation
	Attribute-based Encryption

