
Program Obfuscation

1 Obfuscation Definitions

Definition 1 (ObfuscationAlgorithm.). An obfuscation algorithm(program 𝑃, security parameter 1𝜆; randomness 𝑟)
is a polynomial-time randomized algorithm with the following property:

• (Perfect) Functionality: For all programs 𝑃 ,

Pr
𝑟
[(𝑃, 1𝜆; 𝑟) ≡ 𝑃] = 1

Of course, we will also want some notion of security. But what should it be? I encourage you to pause
here, and think about what the “right” security notion should be.

1.1 Ideal Obfuscation

Perhaps the first notion that comes to mind is that anything you can compute given the obfuscation of a
program, you can compute using only black-box access to the function.

Definition 2 (Ideal Obfuscation). An obfuscation algorithm  is an ideal obfuscator if for every PPT adver-
sary 𝐴, there is a PPT simulator 𝑆𝑖𝑚 such that for all programs 𝑃 , we have

𝐴((𝑃, 1𝜆)) ≈𝑐 𝑆𝑖𝑚𝑃 (|𝑃 |, 1𝜆)

To illustrate the power of ideal obfuscation, we note that it can be used to generically convert a secret
key encryption scheme into a public-key one.

Theorem 3 (Essentially Diffie-Helman ’76). Assume an ideal obfuscator exists. If a secret key encryption
scheme exists, then a public-key encryption scheme exists.

Proof (Sketch). We will not be so formal here for reasons we will see later. Generate the secret key 𝑠𝑘 =
(𝑠𝑘′, 𝑘)where 𝑠𝑘′ is a secret key to the private key encryption scheme and 𝑘 is the key to a PRF.The public
key will be 𝑝𝑘 = (𝑃, 1𝜆) where 𝑃 is the program 𝑃(𝑚; 𝑟) = 𝐸𝑛𝑐(𝑠𝑘, 𝑚; 𝑃𝑅𝐹𝑘(𝑟)).

Observe that black box access to 𝑃 is the same as being able to see chosen plaintexts in the CPA security
game.

In fact, one can even just outright construct a public-key encryption scheme (and much more) using
ideal obfuscation. Unfortunately, ideal obfuscators do not exist.

Theorem 4. An ideal obfuscator does not exist.

The idea is to consider the adversary that just outputs the program it is given. On the other hand, the
simulator can only query a small number of outputs of 𝑃 , so it is hopeless to come up with a program that
exactly computes 𝑃 . Indeed, one can show that this is impossible if 𝑃 is a PRF. But we can also show it is
impossible unconditionally for 𝑃 that are “point functions.”

1

Proof. Consider the adversary 𝐴 that just outputs the program it is given as input, i.e., 𝐴(𝑃) = 𝑃 . For
𝑥 ∈ {0, 1}𝜆, let 𝑃𝑥 be the program given by 𝑃𝑥(𝑦) = 1[𝑦 = 𝑥]. Let 𝑃𝑧𝑒𝑟𝑜 be a program that always outputs
zero and has the same length as each 𝑃𝑥 program.

Since 𝑆𝑖𝑚 makes poly(𝜆) queries, we have that

Pr
𝑥←{0,1}𝜆

[𝑆𝑖𝑚𝑃𝑧𝑒𝑟𝑜 (|𝑃𝑧𝑒𝑟𝑜 |, 1𝜆) makes an oracle query to 𝑥] ≤ poly(𝜆)2−𝜆 = negl(𝜆). (1)

Then there must exist a fixed 𝑥 such this bound holds. For this 𝑥 , we have that

(𝑃𝑥 , 1𝜆) = 𝐴((𝑃𝑥 , 1𝜆)) ≈𝑐 𝑆𝑖𝑚𝑃𝑥 (|𝑃 |, 1𝜆)

≈𝑠 𝑆𝑖𝑚𝑃𝑧𝑒𝑟𝑜 (|𝑃 |, 1𝜆)

≈𝑐 𝐴((𝑃𝑧𝑒𝑟𝑜 , 1𝜆)) = (𝑃𝑧𝑒𝑟𝑜 , 1𝜆)

where the first and third line come from the definition of 𝐴 and the assumption on  and the middle line
comes Equation (1) for this 𝑥 and the fact that 𝑃𝑥 and 𝑃𝑧𝑒𝑟𝑜 are identical except at 𝑥 .

But this is a contradiction because (𝑃𝑥 , 1𝜆)) ≈𝑐 (𝑃𝑧𝑒𝑟𝑜 , 1𝜆) is clearly false (the programs evaluate to
different values on 𝑥).

1.2 Virtual Black Box Obfuscation

In light of this impossibility, it is natural to relax our security notion from hiding “many bits” to just hiding
“single bits.”

Definition 5 (Virtual Black Box (VBB) Obfuscation [BGIRSVY ’01]). An obfuscation algorithm is an VBB
obfuscator if for every PPT adversary 𝐴, there is a PPT simulator 𝑆𝑖𝑚 such that for all programs 𝑃

|||Pr[𝐴((𝑃, 1
𝜆)) = 1] − Pr[𝑆𝑖𝑚𝑃 (|𝑃 |, 1𝜆)) = 1]||| ≤ 𝜆−𝜔(1).

Theorem 6 (BGIRSVY ’01). VBB obfuscation does not exist.

Proof. For strings 𝛼, 𝛽 ∈ {0, 1}𝜆 and a bit 𝑏 ∈ {0, 1}, let 𝑃𝛼,𝛽,𝑏 be the program given by

𝑃𝛼,𝛽,𝑏(𝑄) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝛼, if 𝑄 = 𝛽
𝑏, if 𝑄(𝛼) = 𝛽
0, otherwise,

Observe that running 𝑃𝛼,𝛽,𝑏 on itself will output 𝑏 . So the adversary 𝐴(𝑃) = 𝑃(𝑃) satisfies that for all 𝛼, 𝛽
and 𝑏 that

Pr[𝐴((𝑃𝛼,𝛽,𝑏 , 1𝜆)) = 𝑏] = 1.

On the other hand, we will show there is no way to recover 𝑏 using black box access to 𝑃 in poly(𝜆)
queries for all 𝛼 and 𝛽.

The proof is similar to the ideal obfuscation case. Let 𝑆𝑖𝑚 be an arbitrary PPT algorithm. Let 𝑃𝑧𝑒𝑟𝑜
denote the all zero program of the same length as 𝑃𝛼,𝛽,𝑏 . Since 𝑆𝑖𝑚 makes poly(𝜆) many queries

Pr
𝛼←{0,1}𝜆,𝛽←{0,1}𝜆

[𝑆𝑖𝑚𝑃𝑧𝑒𝑟𝑜 (|𝑃𝑧𝑒𝑟𝑜 |, 1𝜆) queries a 𝑄 with 𝑄 = 𝛽 or 𝑄(𝛼) = 𝛽] ≤ poly(𝜆)2−𝜆+1 ≤ negl(𝜆). (2)

2

Then there are fixed 𝛼 and 𝛽 such that the above bound holds. For these 𝛼 and 𝛽 and any 𝑏 ∈ {0, 1},

𝑆𝑖𝑚𝑃𝛼,𝛽,𝑏 (|𝑃𝛼,𝛽,𝑏 |, 1𝜆) ≈𝑠 𝑆𝑖𝑚𝑃𝑧𝑒𝑟𝑜 (|𝑃𝑧𝑒𝑟𝑜 |, 1𝜆)

because of Equation (2) and the fact that 𝑃𝛼,𝛽,𝑏 and 𝑃𝑧𝑒𝑟𝑜 are identical on all points 𝑄 with 𝑄 ≠ 𝛽 and
𝑄(𝛼) ≠ 𝛽. Thus, we have that

Pr
𝑏←{0,1}

[𝑆𝑖𝑚𝑃𝛼,𝛽,𝑏 (|𝑃𝛼,𝛽,𝑏 |, 1𝜆)) = 𝑏] ≤
1
2
+ negl(𝜆),

as desired.

The crux of this proof is that Turing machines can eat themselves. One might wonder if it extends to
circuits. (Digression: the inability of circuits to eat themselves is related to the difficulty of proving even
seemingly “obvious” lower bounds on circuits. While we know that 𝐷𝑇 𝐼𝑀𝐸[𝑛 log2 𝑛] ⊈ 𝐷𝑇 𝐼𝑀𝐸[𝑛], it is
still open if 𝐷𝑇 𝐼𝑀𝐸𝑁𝑃 [2𝑛] ⊆ 𝑆𝐼𝑍𝐸[3.2𝑛]!)

It turns out that one can rule out VBB for circuits. The key idea is to use homomorphic encryption to
enable circuits to “eat themselves.”

Theorem 7 (BGIRSVY ’01). VBB obfuscation for circuits does not exist.

Proof (Sketch). We sketch this proof because the details are a bit involved. The first step is to show that a
FHE scheme exists if VBB for circuits exists. We won’t discuss here how to do this.

For a secret key 𝑠𝑘 to homomorphic encryption scheme with cipher texts of size 𝜆, strings 𝛼, 𝛽 ∈ {0, 1}𝜆

and a bit 𝑏 ∈ {0, 1}, let 𝐶𝑠𝑘,𝛼,𝛽,𝑏 be the circuit that takes as input a string of size at most poly(𝜆) and outputs

𝐶(𝑥) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

Enc𝑠𝑘(𝛼), if 𝑥 = 0
𝛼, if 𝑥 = 𝛽
𝑏, if 𝐷𝑒𝑐𝑠𝑘(𝑥) = 𝛽
0, otherwise,

Note that
𝑏 = 𝐶(Eval(𝐶, 𝐶(0)).

On the other hand, one can show (we won’t here) that in the black box setting, it is impossible to recover
𝑏 .

1.3 Indistinguishability Obfuscation

In light of these impossibility results, Barak et al. suggested another notion of obfuscation.

Definition 8 (Indistinguishability Obfuscation (𝑖𝑂) [BGIRSVY ’01]). An obfuscator is an indistinguisha-
bility obfuscator if for any two circuits 𝐶 and 𝐶′ of the same size computing the same function, we have

(𝐶, 1𝜆) ≈𝑐 (𝐶′, 1𝜆).

Note: unless otherwise specified, we set 𝜆 = |𝐶|. (We can always pad 𝐶 to get a larger security
parameter.)

Some interpretations:

3

• The only thing the obfuscated circuit reveals are things about the truth table of the circuit, not things
about the implementation of the circuit.

• One can think of it is a pseudocanonicalizer (themeaningmight bemore clear from the next theorem)

• You might think to yourself. How can 𝑖𝑂 be useful, since it only shows indistinguishability between
functionally identical circuits? This is a very reasonable intuition. Hold on to it for when we see
how to use 𝑖𝑂!

Unlike almost all other cryptographic objects, 𝑖𝑂 exists if 𝐏 = 𝐍𝐏!

Theorem 9 (BGIRSVY ’01). If 𝐏 = 𝐍𝐏, then 𝑖𝑂 exists.

Proof. Let 𝑖𝑂(𝐶) be the lexicographically first circuit equivalent to 𝐶. Then clearly for any circuits 𝐶 and
𝐶′ computing the same function we have 𝑖𝑂(𝐶) = 𝑖𝑂(𝐶′). Furthermore, this is efficiently computable if
𝐏 = 𝐍𝐏.

The culmination of a long line of work starting with [GGHRSW ‘13] now shows that 𝑖𝑂 exists under
plausible assumptions.

Theorem 10 (JLS ’21). Under “well studied” cryptographic assumptions, 𝑖𝑂 exists.

2 𝑖𝑂, what is it good for?

Since one-way functions imply that 𝐏 ≠ 𝐍𝐏, this means that, using current techniques, we cannot even
prove that 𝑖𝑂 implies one-way functions. This makes 𝑖𝑂 seem quite weak. In this section, we will begin
showing that 𝑖𝑂 is actually very strong, as long as you add in (essentially) the assumption that 𝐏 ≠ 𝐍𝐏.

2.1 One-way Functions

First, we will show how to construct one-way functions using 𝑖𝑂 .

Theorem 11 (KMNPRY ’14). Assume 𝑖𝑂 exists and there is no PPT algorithm solving SAT infinitely often.
Then one-way functions exist.

Proof. Our one-way functionwill be 𝑓𝑠(𝑟) = 𝑖𝑂(𝑍𝑠; 𝑟)where𝑍𝑠 denotes a circuit with 𝑠 gates that computes
the zero function. For contradiction, suppose there is a PPT algorithm 𝐼 that inverts 𝑓𝑠 with probability at
least 𝑠−Ω(1) for infinitely many 𝑠. Now consider the following PPT algorithm 𝐴(𝜑) for solving SAT:

1. Let 𝑠 = |𝜑|

2. Sample 𝜑̃ ← 𝑖𝑂(𝜑)

3. Set 𝑟 = 𝐼(𝑠, 𝜑̃)

4. Output “unsatisfiable” iff
𝜑̃ = 𝑖𝑂(𝑍𝑠; 𝑟). (3)

4

Perfect functionality implies that Equation (3) only occurs when 𝜑 is unsatisfiable, so the algorithm is
correct on satisfiable 𝜑. On the other hand, when 𝜑 is unsatisfiable and 𝐼 inverts 𝑓𝑠 , we have

Pr[𝐴(𝜑) = “unsatisfiable”] = Pr
𝜑̃←𝑖𝑂(𝜑)

[𝜑̃ = 𝑖𝑂(𝑍𝑠; 𝐼 (𝑠, 𝜑̃))]

≥ Pr
𝜑̃←𝑖𝑂(𝑍𝑠)

[𝜑̃ = 𝑖𝑂(𝑍𝑠; 𝐼 (𝑠, 𝜑̃))] − negl(𝑠)

≥ 𝑠−Ω(1).

where the first line is by definition, the second by 𝑖𝑂 security since 𝜑 is unsatisfiable, and the last by the
assumed properties of 𝐼 .

One can amplify this 𝑠−Ω(1) success probability to 1 − negl(𝑠) by repeating poly(𝑠) times. Hence, we
get a PPT algorithm solving SAT infinitely often, which is a contradiction.

2.2 Witness Encryption

Now we will use 𝑖𝑂 to construct an exotic cryptographic primitive we have not mentioned before in class:
witness encryption.

Definition 12 (GGSW ’13). A witness encryption scheme (for SAT) consists of two probabilistic polynomial
algorithms Enc(formula 𝜑, bit 𝑏 , security parameter 1𝜆) and Dec(ciphertext 𝑐, witness 𝑤) with the following
two properties:

• Functionality: If 𝜑(𝑤) = 1, then

Pr[Dec(Enc(𝜑, 𝑏, 1𝜆), 𝑤) = 𝑏] = 1.

• Security: If 𝜑 is unsatisfiable, then

Enc(𝜑, 0, 1𝜆) ≈𝑐 Enc(𝜑, 1, 1𝜆).

Note that this definition does not necessarily say that you need a witness to decrypt 𝑏 , it only says if
you can decrypt 𝑏 , then 𝜑 is satisfiable. In the problem set, we will explore this more.

Theorem 13. If 𝑖𝑂 exists, then witness encryption exists.

Proof. The construction is:

• Enc(𝜑, 𝑏, 1𝜆; 𝑟) = 𝑖𝑂(𝑥 ↦ 𝑏 ∧ 1[𝜑(𝑥) = 1], 1𝜆; 𝑟)

• Dec(𝐶, 𝑤) = 𝐶(𝑤).

It is easy to see that functionality holds. It remains to show security. If 𝜑 is unsatisfiable, we have that

Enc(𝜑, 𝑏, 1𝜆) = 𝑖𝑂(𝑥 ↦ 𝑏 ∧ 1[𝜑(𝑥) = 1], 1𝜆)

≈𝑐 𝑖𝑂(𝑥 ↦ 𝑏 ∧ 0, 1𝜆)

≈𝑐 𝑖𝑂(𝑥 ↦ 0, 1𝜆),

so we have that Enc(𝜑, 0, 1𝜆) ≈𝑐 Enc(𝜑, 1, 1𝜆), as desired.

5

A few remarks about this proof:

• We did not need to assume that 𝐏 ≠ 𝐍𝐏 for this proof. Indeed, witness encryption is possible if
𝐏 = 𝐍𝐏.

• We only really needed the security guarentee of 𝑖𝑂 to hold for unsatisfiable circuits.

• You could ask if we can construct a stronger variant of witness encryption where one can decrypt
if and only if you know a witness. In a certain sense, this scheme actually has this property: if a
scheme with the property exists, then a (slight modification) of this scheme also has this property.
You will explore this in the problem set. It is related to a phenomena where 𝑖𝑂 is “best possible
obfuscation.”

2.3 Public Key Encryption

Building on the witness encryption construction, we can construct public-key encryption.

Theorem 14 (GGSW ’13). If 𝑖𝑂 exists and no PPT algorithm solves SAT infinitely often, then public-key
encryption exists.

Proof. Let 𝐺 ∶ {0, 1}𝜆 → {0, 1}2𝜆 be a pseudorandom generator (which follows from the existence of one-
way functions which follows from iO and the hardness of SAT). Let 𝑊𝐸 and 𝑊𝐷 be witness encryption
and witness decryption algorithms respectively.

The construction is:

• 𝐺𝑒𝑛(1𝜆) samples a secret key 𝑠𝑘 ← {0, 1}𝜆, computes 𝑟 = 𝐺(𝑠𝑘) and sets the public key 𝑝𝑘 = 𝐺(𝑠𝑘)

• Enc(𝑝𝑘, 𝑏) outputs𝑊𝐸(𝜑𝑝𝑘 , 𝑏, 1𝜆), where

𝜑(𝑥) = 1[𝐺(𝑥) = 𝑝𝑘].

• Dec(𝑐, 𝑠𝑘) = 𝑊𝐷(𝑐, 𝑠𝑘).

Functionality is clear. Now we need to show security. Specifically, we need to show that

(𝑝𝑘,Enc(𝑝𝑘, 0)) ≈𝑐 (𝑝𝑘,Enc(𝑝𝑘, 1)).

This follows from the following hybrid argument.

(𝑝𝑘, Enc(𝑝𝑘, 𝑏)) = (𝑝𝑘 = 𝐺(𝑠),𝑊𝐸(𝜑𝑝𝑘 , 𝑏))𝑠←{0,1}𝜆

≈𝑐 (𝑝𝑘 = 𝑟,𝑊𝐸(𝜑𝑝𝑘 , 𝑏))𝑟←{0,1}2𝜆

≈𝑐 (𝑝𝑘 = 𝑟,𝑊𝐸(𝜑𝑝𝑘 , 0))𝑟←{0,1}2𝜆

the first line is by definition, the second is by PRG security, the third line is by WE security since with
1 − negl(𝜆) probability 𝜑𝑝𝑘 is unsatisfiable (because a random string 𝑟 ← {0, 1}2𝜆 is in the range of 𝐺 ∶
{0, 1}𝜆 → {0, 1}2𝜆 with probability 2−𝜆). The last hybrid is independent of 𝑏 , completing the proof.

6

Remarks

• Try revisiting the intuition that “iO looks useless because it only shows indistinguishability for func-
tionally identical circuits.” How did this proof get around this?

• This proof does not look like the Diffie-Hellman way of getting PKE from obfuscation. In the next
class, we will see a different PKE scheme that looks more like the Diffie-Hellman approach.

2.4 Witness PRF (or “Designated Verifier SNARGs”)

Suppose Alice wants to prove to Bob that a public 𝑛-input formula 𝜑 is satisfiable with as little communi-
cation between them as possible. Alice could send a witness 𝑤 over to Bob, but that requires 𝑛-bits. We
would like to be more succinct? Ideally polylog(𝑛) bits.

One idea to solve this is to use witness encryption. Bob could send Alice several witness encryptions
under 𝜑 and then if Alice decrypts all of them, Bob is convinced that 𝜑 is satisfiable.

The problem is that the witness encryption scheme we have constructed has long ciphertexts (way
longer than 𝑛 bits), so this is worse than just sending over the witness.

So, we need a different apprach. One attempt at doing this involves a witness PRF.Witness PRFs (which
we define in a few sentences) will allow Alice to convince Bob that 𝜑 is satisfiable with little communi-
cation, with the caveat that one allows a first setup phase, where Bob sends Alice a single long message
“once and for all” before anyone knows 𝜑.

A witness PRF is a PRF with two types of keys, a secret key that allows evaluation on all points, and a
public key that allows evaluation only on points that correspond to satisfiable formulas (that one produces
a witness to).

Definition 15 (Zhandry ’14). A witness PRF consists of a pseudorandom function family 𝑃𝑅𝐹𝑘 and two PPT
algorithms 𝑃𝑢𝑏𝑙𝑖𝑐𝐺𝑒𝑛(key 𝑘) = 𝑝𝑘, and Eval(public key 𝑝𝑘, formula 𝜑, witness 𝑤) with the following two
guarantees:

• Functionality: For all formulas 𝜑 with 𝜑(𝑤) = 1, we have

Pr
𝑘←{0,1}𝜆

𝑝𝑘←𝑃𝑢𝑏𝑙𝑖𝑐𝐺𝑒𝑛(𝑘)

[𝐸𝑣𝑎𝑙(𝑝𝑘, 𝜑, 𝑤) = 𝑃𝑅𝐹𝑘(𝜑)] = 1

• Security: For every unsatisfiable formula 𝜑⋆, we have that when 𝑘 ← {0, 1}𝜆 and 𝑝𝑘 ← 𝑃𝑢𝑏𝑙𝑖𝑐𝐺𝑒𝑛(𝑘)
and 𝑧 ← {0, 1}𝜆

(𝑝𝑘, 𝜑⋆, 𝑃𝑅𝐹𝑘(𝜑⋆)) ≈𝑐 (𝑝𝑘, 𝜑⋆, 𝑧)

Assuming witness PRFs exist, Bob can send Alice 𝑝𝑘, and then Alice can convince Bob that 𝜑 is satis-
fiable by sending (𝜑, 𝑃𝑅𝐹𝑘(𝜑)).

Theorem 16 (Essentially Sahai-Waters ’13). If 𝑖𝑂 and PRFs exists, then a witness PRF exists.

Fake Proof. A natural first attempt: Let 𝑃𝑅𝐹𝑘 be an arbitrary PRF. Let

• 𝑃𝑢𝑏𝑙𝑖𝑐𝐺𝑒𝑛(𝑘) outputs 𝑖𝑂
(
(𝜑,𝑤) ↦

{
𝑃𝑅𝐹𝑘(𝜑), if 𝜑(𝑤) = 1
⊥, otherwise.)

• Eval(𝑝𝑘, 𝜑, 𝑤) = 𝑝𝑘(𝜑, 𝑤).

7

Functionality is clear. It only remains to argue for security. If 𝜑⋆ is unsatisfiable, then we have that

𝑖𝑂
(
(𝜑,𝑤) ↦

{
𝑃𝑅𝐹𝑘(𝜑), if 𝜑(𝑤) = 1
⊥, otherwise.)

≈𝑐 𝑖𝑂 (
(𝜑,𝑤) ↦

{
𝑃𝑅𝐹𝑘(𝜑), if 𝜑(𝑤) = 1 and 𝜑 ≠ 𝜑⋆

⊥, otherwise.)

So we eliminated the circuit’s dependence on 𝑃𝑅𝐹𝑘(𝜑⋆), so we are done, right? Not so fast, the key 𝑘 is
still in the code, which determines the value 𝑃𝑅𝐹𝑘(𝜑⋆), so we are not done.

What we need to show is that there is some code which enables us to attain the same functionality as
above without the code revealing anything about the value of 𝑃𝑅𝐹𝑘(𝜑⋆).

To do this, we strengthen the notion of a PRF to a “puncturable PRF.” This is a great example of how
one usually works with iO. Oftentimes, one needs to make objects “iO friendly” in order to prove intuitive
looking statements.

Definition 17. A puncturable PRF consists of a pseudrandom function family 𝑃𝑅𝐹𝑘 and two randomized
polynomial-time algorithms 𝑃𝑢𝑛𝑐𝐺𝑒𝑛(key 𝑘, puncture point 𝑥⋆) = 𝑝𝑘, and 𝑃𝑢𝑛𝑐𝐸𝑣𝑎𝑙(punctured key 𝑝𝑘, point 𝑥)
with the following two properties:

• Evaluates on Non-punctured Points: For all 𝑥 ≠ 𝑥⋆ when 𝑘 ← {0, 1}𝜆 and 𝑝𝑘 ← 𝑃𝑢𝑛𝑐𝐺𝑒𝑛(𝑘)

Pr[𝑃𝑢𝑛𝑐𝐸𝑣𝑎𝑙(𝑝𝑘, 𝑥) = 𝑃𝑅𝐹𝑘(𝑥)] = 1

• Hides PuncturedOutput: For all 𝑥 ≠ 𝑥⋆ when 𝑘 ← {0, 1}𝜆 and 𝑝𝑘 ← 𝑃𝑢𝑛𝑐𝐺𝑒𝑛(𝑘) and 𝑧 is uniformly
random

(𝑝𝑘, 𝑥⋆, 𝑃𝑅𝐹𝑘(𝑥⋆)) ≈𝑐 (𝑝𝑘, 𝑥⋆, 𝑧)

Using a punctured PRF, one can complete the proof of security of theWitness PRF. Furthermore, punc-
tured PRFs can be obtained generically from PRFs.

Theorem 18. If PRFs exist, then puncturable PRFs exist.

Proof Idea. For those students who remember the GGM construction of PRFs from PRGs: Recall the GGM
tree. Instead of giving the key at the top. Give the key at the top of every maximal subtree that does not
include 𝑥⋆.

8

	Obfuscation Definitions
	Ideal Obfuscation
	Virtual Black Box Obfuscation
	Indistinguishability Obfuscation

	iO, what is it good for?
	One-way Functions
	Witness Encryption
	Public Key Encryption
	Witness PRF (or ``Designated Verifier SNARGs'')

