
Program Obfuscation II: The Puncturing Paradigm

1 IO is a “Best-Possible” Obfuscation

Assume that in the future someone discovers an obfuscator ′ which has better hiding properties, e.g.
given ′(𝐶), it is hard for any PPT adversary to predict 𝜋(𝐶) for a class of predicates 𝜋. Assume that ′

has overhead 𝑞(⋅) for some polynomial 𝑞 in the sense that |′(𝐶)| ≤ 𝑞(|𝐶|)).
We will show that (pad𝑞(𝐶)), where  is an indistinguishability obfuscator, has the same hiding

properties where pad𝑞(𝐶) makes the circuit 𝐶 artificially bigger, of size 𝑞(|𝐶|). Assume, for contradiction,
that there is an adversary  such that

Pr[((pad𝑞(𝐶))) = 𝜋(𝐶)] ≥ 1/2 + 1/𝑝(𝜆).

Since pad𝑞(𝐶) and ′(𝐶) compute the same function and are of the same size,

Pr[((′(𝐶))) = 𝜋(𝐶)] ≥ 1/2 + 1/𝑝(𝜆) − negl(𝜆)

by the indistinguishability property of . This gives us an adversary who contradicts the claimed security
of ′. The adversary ′, on input ′(𝐶), simply runs  on (′(𝐶)), giving us

Pr[′(′(𝐶)) = 𝜋(𝐶)] ≥ 1/2 + 1/𝑝(𝜆) − negl(𝜆) ,

contradicting the claimed security of ′.

1.1 An Application: Time-lock Puzzles

A time-lock puzzle is defined by a puzzle generation algorithm Gen which outputs a puzzle 𝑘 together
with its solution 𝑠. We have an Eval algorithm that is given 𝑘, runs in sequential time 𝑇 and outputs 𝑠. We
require that no PPT machine that runs in sequential time significantly less than 𝑇 should be able to output
𝑠 given 𝑘, even if it can do arbitrary polynomial-time parallel computation ≫ 𝑇 .

A classical example is the Rivest-Shamir-Wagner construction where the puzzle is (𝑔, 𝑥, 𝑁): 𝑁 = 𝑝𝑞
is an RSA modulus; 𝑔 is a random element of ℤ∗

𝑁 , and 𝑥 ∈𝑅 [0, 𝑁] is randomly chosen. The solution is
𝑠 = 𝑔𝑥𝑇 mod 𝑁 . This can be computed in time proportional to 𝑇 (think of 𝑇 as being much larger than
poly(log𝑁), the time to do basic operations in the group). The point is, 𝑠 is easy to compute given the
factorization of 𝑁 which in particular tells us 𝜑(𝑁). Given this, first compute 𝑦 = 𝑥𝑇 mod 𝜑(𝑁) and then
raise 𝑔 to the power of 𝑦 mod 𝑁 . However, given only 𝑁 , and assuming factoring is hard, it appears that
any strategy would require computing iteratively 𝑔𝑥 𝑖 mod 𝑁 for 𝑖 = 1, 2, … , 𝑇 .

Are there different constructions? In particular, constructions that don’t have to make the seemingly
ad-hoc assumption that exponentiation is inherently sequential?

A Construction using IO. If you think about it a bit, you realize that one has to assume something. i.e.
that there exist computations that are inherently sequential. More formally, there is a Turing machine 𝑀𝑇
such that on input 𝑥 , computing 𝑀𝑇 (𝑥) requires sequential time 𝑇 . In other words, we have to assume that
not all computations are parallelizable.

Consider a dummy Turing machine 𝑀 ′
𝑇 ,𝑠 that does nothing for 𝑇 time steps, and eventually outputs the

string 𝑠. The description of the puzzle is the IO obfuscation 𝑘 = (𝑀 ′
𝑇 ,𝑠). Here, we assume that one can in

fact obfuscate Turing machines in a way that the size of the obfuscated TM does not depend on the runtime

1

of the TM. This can indeed be done assuming IO for circuits; see Canetti-Jain-Holmgren-Vaikuntanathan
STOC 2015.

We claim that no 𝑇 ′ ≪ 𝑇 time algorithm can learn 𝑠 given the puzzle 𝑘. Suppose, for contradiciton,
that there is an algorithm that does this. Consider running the algorithm on input (𝑀 ′′

𝑇 ,𝑠) where 𝑀 ′′
𝑇 ,𝑠

runs the inherently sequential machine 𝑀𝑇 for 𝑇 time steps, outputs 𝑠 if 𝑀𝑇 outputs 1, and outputs ⊥ if
𝑀𝑇 outputs 0.

On the one hand, if 𝑀𝑇 outputs 1, 𝑀 ′′
𝑇 ,𝑠 and 𝑀 ′

𝑇 ,𝑠 are functionally equivalent, so the adversary outputs
𝑠 in this case, in time 𝑇 ′ ≪ 𝑇 . On the other hand, if 𝑀𝑇 outputs 0, 𝑀 ′′

𝑇 ,𝑠 is functionally equivalent to the
machine that always outputs ⊥. Here, the adversary has information-theoretically no chance of outputting
𝑠 in polynomial-time. Thus, being able to output 𝑠 is a distinguisher between the cases that 𝑀𝑇 outputs 1
and where it outputs 0. In summary, an adversary that breaks the time-lock puzzle gives us an algorithm
to compute 𝑀𝑇 in sequential time 𝑇 ′ ≪ 𝑇 , breaking the assumption that 𝑀𝑇 takes sequential time 𝑇 to
compute.

2 IO Engineering I: Using Puncturable PRFs

Puncturable pseudorandom functions (PPRFs) are extremely useful in constructions using IO. We define
them below and show several applications. Informally, PPRFs are PRFs where you can release keys that
allows one to compute values of the PRF at all inputs except for one “punctured” point.

Definition 1 (Puncturable PRFs). A puncturable family of PRFs is given by a triple of uniform PPT machines
(PRFGen, Punc, PRF), and a pair of computable functions 𝑛(⋅) and 𝑚(⋅), satisfying the following conditions:

Correctness. For all outputs 𝐾 of PRFGen(1𝜆), all points 𝑖 ∈ {0, 1}𝑛(𝜆), and 𝐾{𝑖} = Punc(𝐾, 𝑖), we have that

PRF(𝐾{𝑖}, 𝑥) = PRF(𝐾, 𝑥)

for all 𝑥 ≠ 𝑖.

Pseudorandom at punctured point. For every p.p.t. adversary (1,2), there is a negligible function 𝜇,
such that in an experiment where 1(1𝜆) outputs a point 𝑖 ∈ {0, 1}𝑛(𝜆) and a state 𝜎, 𝐾 ← PRFGen(1𝜆)
and 𝐾{𝑖} = Punc(𝐾, 𝑖), the following holds

|| Pr[2(𝜎, 𝐾{𝑖}, 𝑖, PRF(𝐾, 𝑖)) = 1] − Pr[2(𝜎, 𝐾{𝑖}, 𝑖, 𝑈𝑚(𝜆)) = 1]|| ≤ 𝜇(𝜆)

where 𝜇 is called the distinguishing gap for (1,2).

Furthermore, we say that the puncturable PRF is 𝛿-indistinguishable if the above pseudorandom property
holds with a distinguishing gap 𝜇 bounded by 𝛿. Especially, the puncturable PRF is sub-exponentially indis-
tinguishable if 𝜇(𝜆) is bounded by 2−𝜆𝜖 for a constant 𝜖.

The GGM tree-based construction of PRFs from pseudorandom generators (PRGs) yields puncturable
PRFs for any (efficiently computable) 𝑛(⋅) and 𝑚(⋅). Furthermore, it is easy to see that if the PRG underlying
the GGM construction is sub-exponentially hard (and this can in turn be built from sub-exponentially hard
OWFs), then the resulting puncturable PRF is sub-exponentially pseudo-random.

2

2.1 Application: A Different Public-Key Encryption Scheme from IO

This is (likely?) the construction that Diffie and Hellman had in mind. The idea is to start from a secret-key
encryption scheme, obfuscate its encryption algorithm, and publish the obfuscated program as the public
key. More precisely, the program to be obfuscated contains the secret key sk, takes in a message 𝑚 and a
random string 𝑟 , and outputs SKEnc(sk, 𝑚; 𝑟). However, this has to be done with care.

As a first try, let us take the simple secret-key encryption scheme where the secret key sk is the seed of
a pseudorandom function (PRF), and the encryption algorithm evaluates the PRF on a random string and
uses it as a one-time pad for the message. That is,

SKEnc(sk, 𝑚; 𝑟) = (𝑟, PRF(sk, 𝑟) ⊕ 𝑚) .

The public-key now is an obfuscated program that takes (𝑚, 𝑟) as input and outputs SKEnc(sk, 𝑚; 𝑟). Is the
resulting public-key encryption scheme secure?

The construction that actually works is a clever twist on this, and is due to Sahai and Waters (Proceed-
ings of ACM STOC 2014).

The Construction. Let  be an indistinguishability obfuscator, 𝐺 ∶ {0, 1}𝑛 → {0, 1}2𝑛 be a pseudoran-
dom generator, and (PRFGen, Punc, PRF) be a puncturable PRF family. The public-key encryption scheme
(KeyGen,Enc,Dec) works as follows.

• KeyGen(1𝑛): The secret key is a uniformly random string 𝐾 ← {0, 1}𝜆. Let Π𝐾 be the following
program that takes as input 𝑚 ∈ {0, 1}2𝑛 and 𝑟 ∈ {0, 1}𝑛.

Π𝐾 (𝑚, 𝑟) does the following:

– Compute 𝑦 = 𝐺(𝑟).

– Output (𝑦, PRF(𝐾, 𝑦) ⊕ 𝑚).

The public key is an obfuscation of Π𝐾 and the secret key is the PRF key 𝐾 . That is,

pk = Π̂𝐾 = (Π𝐾) and sk = 𝐾.

• Enc(pk, 𝑚): Sample a random string 𝑟 ← {0, 1}𝑛 and output Π̂𝐾 (𝑟, 𝑚).

• Dec(sk, 𝑐): Run the secret-key decryption algorithm. That is, interpret 𝑐 as a pair (𝑐0, 𝑐1) and output
𝑐1 ⊕ PRF(𝐾, 𝑐0) as the message.

Theorem 2. (KeyGen,Enc,Dec) is a semantically secure public-key encryption scheme.

Proof. Correctness is immediate. We now show semantic security.

Hybrid 0. The real distribution of pk = (Π𝐾) and Enc(pk, 𝑚∗) = (𝑦∗ = 𝐺(𝑟∗), PRF(𝐾, 𝑦∗) ⊕ 𝑚∗) for
𝑟∗ ← {0, 1}𝑛.

3

Hybrid 1. We change the public key from pk = (Π𝐾) to pk = (Π
′
𝑦∗,𝐾{𝑦∗},PRF(𝐾,𝑦∗)), whereΠ′

𝑦∗,𝐾{𝑦∗},𝑧∗(𝑚, 𝑟)
is the following program, taking as input 𝑚 ∈ {0, 1}2𝑛 and 𝑟 ∈ {0, 1}𝑛.

Π′
𝑦∗,𝐾{𝑦∗},𝑧∗(𝑚, 𝑟):

• Compute 𝑦 = 𝐺(𝑟).

• If 𝑦 = 𝑦∗, output (𝑦, 𝑧∗ ⊕ 𝑚).

• Else, output (𝑦, PRF(𝐾{𝑦∗}, 𝑦) ⊕ 𝑚).

Since we hard-code 𝑧∗ = PRF(𝐾, 𝑦∗) into the program, Π′
𝑦∗,𝐾{𝑦∗},PRF(𝐾,𝑦∗) has the exact same function-

ality as Π𝐾 , and thus we can invoke IO security (as well as PPRF correctness) to argue indistinguishability
from hybrid 0.

Hybrid 2. We substitute 𝑦∗ = 𝐺(𝑟∗) for 𝑦∗ ← {0, 1}2𝑛 in both the public key and ciphertext.
This is indistinguishable from hybrid 1 by security of the PRG. (The only reference to 𝑟∗ is via 𝑦∗ =

𝐺(𝑟∗), so this is valid.)

Hybrid 3. We change the public key into the obfuscation of the following program Π′′
𝑦∗,𝐾{𝑦∗}, taking as

input 𝑚 ∈ {0, 1}2𝑛 and 𝑟 ∈ {0, 1}𝑛.

Π′′
𝑦∗,𝐾{𝑦∗}(𝑚, 𝑟):

• Compute 𝑦 = 𝐺(𝑟).

• If 𝑦 = 𝑦∗, output ⊥.

• Else, output (𝑦, PRF(𝐾{𝑦∗}, 𝑦) ⊕ 𝑚).

The only difference in functionality between Π′′
𝑦∗,𝐾{𝑦∗} and Π′

𝑦∗,𝐾{𝑦∗},PRF(𝐾,𝑦∗) is in the case when 𝐺(𝑟) =
𝑦∗. However, since 𝐺 is length-doubling and 𝑦∗ ← {0, 1}2𝑛 is uniformly random, the probability that there
exists any 𝑟 ∈ {0, 1}𝑛 such that 𝐺(𝑟) = 𝑦∗ is at most 2−𝑛. Therefore, with probability at least 1−2−𝑛 over 𝑦∗,
the check “𝐺(𝑟) ?= 𝑦∗?” will never pass on any input 𝑟 . Thus, with probability at least 1−2−𝑛, Π′′

𝑦∗,𝐾{𝑦∗} and
Π′
𝑦∗,𝐾{𝑦∗},PRF(𝐾,𝑦∗) are functionally identical, allowing us to invoke IO security to argue indistinguishability

from hybrid 2.

Hybrid 4. In the ciphertext, we replace PRF(𝐾, 𝑦∗) ⊕ 𝑚∗ with a uniformly random string 𝑐∗ ← {0, 1}2𝑛.
Since the public key now depends only on 𝐾{𝑦∗} and not 𝐾 , by PPRF security, the value PRF(𝐾, 𝑦∗) is

indistinguishable from random, and by a one-time pad argument, the same holds for 𝑐∗.

Hybrid 4 is independent of the message 𝑚∗, so we are done with the proof.

4

3 When IO Alone is Not Enough

3.1 Fully Homomorphic Encryption

A natural idea is to obfuscate a program that, on input any two ciphertexts 𝐶0 and 𝐶1 encrypting bits 𝑏0
and 𝑏1 respectively, decrypts them using a hardcoded secret-key SK, computes the NAND function on 𝑏0
and 𝑏1 and re-encrypts them under PK. That is,

ΠPK,SK(𝐶0, 𝐶1) = Enc(PK,Dec(SK, 𝐶0) NAND Dec(SK, 𝐶1); 𝑟)

An immediate question is where the randomness 𝑟 for Enc comes from. It clearly shouldn’t be hardcoded
into Π; neither should it be left up to the adversary to input the randomness into Π. The only option left is
to hardcode a PRF key 𝐾 into Π, and apply it to the input (𝐶0, 𝐶1) to generate 𝑟 . That is,

ΠPK,SK,𝐾 (𝐶0, 𝐶1) = Enc(PK,Dec(SK, 𝐶0) ∧ Dec(SK, 𝐶1); PRF(𝐾, (𝐶0, 𝐶1)))

This is indeed the idea that will work out for us. In fact, it is not hard to see that if  is a VBB obfuscation
scheme, this construction gives us a secure FHE scheme. However, all we have is IO, and that requires
quite a bit of care.

It turns out that any IO scheme plus a perfectly rerandomizable encryption scheme implies FHE. Both
the construction and the proof is instructive and offers another technique to use IO in a world where IO
and one-way functions together are not enough.

The Construction. Let’s consider where the natural construction of obfuscating the circuit ΠPK,SK,𝐾 as
above and releasing it publicly as the homomorphic evaluation key goes wrong. We’d like to argue that
the evaluation key is indistinguishable from the obfuscation of a circuit

Π′
PK,𝐾 (𝐶0, 𝐶1) = Enc(PK, 0; PRF(𝐾, (𝐶0, 𝐶1)))

which simply ignores the input (except to generate the encryption randomness) and outputs an encryption
of 0. Note that this circuit does not use SK at all.

We will also make one more change: let the input and output encryption schemes use distinct keys.
That is, we will have programs

ΠPK𝑖,SK𝑖−1,𝐾𝑖(𝐶0, 𝐶1) = Enc(PK𝑖,Dec(SK𝑖−1, 𝐶0) ∧ Dec(SK𝑖−1, 𝐶1); PRF(𝐾𝑖, (𝐶0, 𝐶1)))

for 𝑖 = 0, … , 𝐷 − 1 to evaluate circuits of depth up to 𝐷. We will show that this sequence of obfuscated
programs is indistinguishable from the sequence of programs

Π′
PK𝑖,𝐾𝑖

(𝐶0, 𝐶1) = Enc(PK𝑖, 0; PRF(𝐾𝑖, (𝐶0, 𝐶1)))

That is, we will show that

((ΠPK1,SK0,𝐾1), … ,(ΠPK𝐷 ,SK𝐷−1,𝐾𝐷))𝑖=0,…,𝐷−1
≈𝑐 ((Π′

PK1,𝐾1
), … ,(Π′

PK𝐷 ,𝐾𝐷
))𝑖=0,…,𝐷−1 (1)

We will do this in a series of hybrids starting with replacing (ΠPK𝐷 ,SK𝐷−1,𝐾𝐷) in the LHS by (Π′
PK𝐷 ,𝐾𝐷

),
leaving everything else in tact. (Do you see why this is the right order to do the hybrids?)

OK, so how does one show that given SK𝐷−1, an obfuscation of (ΠPK𝐷 ,SK𝐷−1,𝐾𝐷) is indistinguishable
from an obfuscation of (Π′

PK𝐷 ,𝐾𝐷
)? We again go through hybrids and a puncturing argument, this time

5

as many hybrids as the number of possible inputs to either circuit. Note that this is exponentially many!
Let’s number the inputs from 0 to 𝓁 ∶= 2|𝐶|+1 − 1 where |𝐶| is the bit-length of a ciphertext.

Hybrid 0. Define Π(0) ∶= ΠPK𝐷 ,SK𝐷−1,𝐾𝐷 . The adversary sees SK𝐷−1 and (Π(0)).
. . .

Hybrid 𝑖. Define Π(𝑖) to be the program that on input (𝐶0, 𝐶1), checks if it is less than 𝑖. If yes, output
Π′
PK𝐷 ,𝐾𝐷

(𝐶0, 𝐶1), else output ΠPK𝐷 ,SK𝐷−1,𝐾𝐷(𝐶0, 𝐶1). The adversary sees SK𝐷−1 and (Π(𝑖)).
. . .

Hybrid 𝓁 + 1. Define Π(𝓁+1) to be the program that on input (𝐶0, 𝐶1), checks if it is less than 𝓁 + 1. If yes,
output Π′

PK𝐷 ,𝐾𝐷
(𝐶0, 𝐶1), else output ΠPK𝐷 ,SK𝐷−1,𝐾𝐷(𝐶0, 𝐶1). The adversary sees SK𝐷−1 and (Π(𝓁+1)).

Note that in the first hybrid, the adversary sees an obfuscation of ΠPK𝐷 ,SK𝐷−1,𝐾𝐷 and in the last, she sees
an obfuscation ofΠ′

PK𝐷 ,𝐾𝐷
. If an adversary can distinguish between the first and last hybrids with advantage

𝜖, she must be able to distinguish between some two adjacent hybrids with advantage at least 𝜖/2𝓁. We
will (try to) show that this is impossible invoking the security of (a) the IO scheme, (b) the encryption
scheme and (c) the PRF.

The Problem. The first step is to replace the PRF key 𝐾 with a key punctured at input 𝑖; this is OK by IO. The
next step is to replace the value of the PRF at 𝑖 with a truly random string; this is OK by the puncturing
security of the PRF. Now, the output of the programs on input 𝑖 is either

EncPK𝑖(DecSK𝑖−1(𝐶0) NAND DecSK𝑖−1(𝐶1); 𝑟) or EncPK𝑖(0; 𝑟) ,

in the two circuits respectively. In the last step, we want to switch from the first to the second of these
ciphertexts using the semantic security of the encryption scheme.

In each of these steps, one uses the subexponential security of the underlying primitive: IO, PRF, or
the encryption scheme. The first two are OK by increasing the key sizes and the security parameters
sufficiently, but we run into trouble with the encryption scheme. Recall that we will get a distinguisher for
the encryption scheme with advantage 1/(poly(𝜆) ⋅ 2|ct|+1) where ct is a ciphertext in the scheme. However,
any encryption scheme can be broken with such small advantage! (Do you see how?)

The Fix. We will rely on an additional primitive: a perfectly lossy encryption scheme. This is an encryption
scheme with two types of keys: regular keys PK that come with a matching secret decryption key SK;
and lossy keys P̃K where a random ciphertext of 0 is identically distributed to a random ciphertext of 1.
Moreover, a random PK and a random P̃K are computationally indistinguishable.

Armed with a lossy encryption scheme, we proceed as follows. We change the big hybrids (see equa-
tion 1) so that after every step 𝑖, we change the public keys from real to lossy. That is, while before, we were
trying to go from an obfuscation of (ΠPK𝐷 ,SK𝐷−1,𝐾𝐷) to an obfuscation of (Π′

PK𝐷 ,𝐾𝐷
) directly, we insert two

hybrids in between, namely (ΠP̃K𝐷 ,SK𝐷−1,𝐾𝐷
) and (Π′

P̃K𝐷 ,𝐾𝐷
). We then proceed as follows.

(ΠPK𝐷 ,SK𝐷−1,𝐾𝐷) ≈ (ΠP̃K𝐷 ,SK𝐷−1,𝐾𝐷
). This follows from the indistinguishability of lossy and real public

keys.

(Π′
PK𝐷 ,𝐾𝐷

) ≈ (Π′
P̃K𝐷 ,𝐾𝐷

). This follows from the indistinguishability of lossy and real public keys.

(ΠP̃K𝐷 ,SK𝐷−1,𝐾𝐷
) ≈ (Π′

P̃K𝐷 ,𝐾𝐷
). Here, we follow the hybrid argument as above except we note that in the

step where one invokes the IND-CPA security of encryption, we have perfect security! Thus, a distinguisher
breaking the indistinguishability of the two corresponding hybrids with any non-zero advantage gives us
a contradiction.

6

This observation finishes the construction and the proof.

Remark One might wonder if the lossy encryption scheme in the construction is necessary; turns out
it is. Bitansky, Degwekar and Vaikuntanathan constructed an oracle world where IO and OWF (even
OWP) exist, but where 𝐒𝐙𝐊 = 𝐏. Since every FHE scheme can be broken in 𝐒𝐙𝐊, it turns out that in this
oracle world, FHE does not exist. Therefore, there are no black-box FHE constructions from IO and OWP.
(The notion of black-boxness has to be formulated carefully to allow obfuscating programs that invoke the
OWF/OWP; for more details, we refer the reader to the paper of Bitansky, Degwekar and Vaikuntanathan.)

4 IO Engineering II: Using (Zero Knowledge) Proofs

4.1 Bootstrapping IO: From Shallow Circuits to All Circuits

There are many ways to construct an IO for all poly-size circuits starting from an IO for relatively simple
complexity classes. We start by describing perhaps the simplest of these, which also gives us more practice
on how to use IO.

From Fully Homomorphic Encryption. We can show that if there is IO for NC1 circuits and an FHE
scheme whose decryption can be done in NC1, then there is an IO for all of 𝑃 .

The idea is to encrypt the circuit 𝐶 using an FHE key into 𝐶 = FHE.Enc(sk, 𝐶) so that on any input 𝑥 ,
one can homomorphically compute 𝐶(𝑥) ∈ FHE.Enc(sk, 𝐶(𝑥)). The question is how to recover 𝐶(𝑥). For
that purpose, the first, and somewhat naı̈ve, idea is to provide an obfuscation of the following program 𝑃sk.

On input 𝑦: Output FHE.Dec(sk, 𝑦).

Clearly, this is insecure as (𝑃sk) can be used to decrypt 𝐶 and recover the original circuit 𝐶.
A better idea is to obfuscate the “check-then-decrypt” program 𝑃sk,𝑐 which has the secret key sk and

the ciphertext 𝑐 = 𝐶 encoded, and takes a ciphertext 𝑦, an input 𝑥 , and a “proof” 𝜋 as input. If the proof
checks out, it decrypts 𝑦. Importantly for us, the proof will simply be the transcript of the homomorphic
computation that takes 𝐶 to 𝐶(𝑥), and verifying it can be done in parallel, i.e. in NC1. So:

On input (𝑦, 𝜋): Check the proof 𝜋; If it fails, output ⊥, else output FHE.Dec(sk, 𝑦).

This “should” work but it is unclear how to prove it secure using the IO guarantee.
Instead, we resort to the two-track trick ala Naor-Yung. In other words, the obfuscation of 𝐶 is a pair

of ciphertexts
𝑐0 = FHE.Enc(pk0, 𝐶) and 𝑐1 = FHE.Enc(pk1, 𝐶)

and a program that, on input 𝑐′0, 𝑐′1, 𝑥, 𝜋 as input, checks the proof, and if the proof verifies, decrypts 𝑐′0
using sk0.

This turns out to do the trick. To see why, we construct a sequence of hybrids.

Hybrid 1. 𝑐0 and 𝑐1 as above and (𝑃sk0,𝑐0,𝑐1).

Hybrid 2. Change 𝑐1 to be an encryption of 𝐶1 under sk1. OK by semantic security since sk1 is never used
in these hybrids.

7

Hybrid 3. Change the program to be an obfuscation of (𝑃sk1,𝑐0,𝑐1) which decrypts using sk1. These two
programs are functionally equivalent by the perfect correctness of FHE evaluation and the functional
equivalence of 𝐶0 and 𝐶1. Thus, IO guarantees that hybrids 2 and 3 are computationally indistinguishable.

Hybrid 4. Change 𝑐0 to be an encryption of 𝐶1 under sk0. OK by semantic security since sk0 is never used
in these hybrids.

Hybrid 5. Once again, change the program to be an obfuscation of (𝑃sk0,𝑐0,𝑐1) which decrypts using sk0.

The distribution in hybrid 5 is that of obfuscating program 𝐶1. This finishes the proof.

4.2 (Simulation-Sound) NIZK Proofs from NIZK Proofs

Achieving Statistical Simulation-Soundness. We use the following standard compiler from any NIZK
into one that is statistically simulation-sound. The CRS consists of the original CRS (of an underlying NIZK
system) together with a commitment to 0, i.e. 𝑐 = Com(0𝑛; 𝑟) where 0𝑛 is a special string that cannot be
a plausible NP statement. The prover, given (𝑥, 𝑤) shows that either 𝑥 ∈ 𝐿 or ∃𝑟 such that 𝑐 = Com(𝑥; 𝑟).
Soundness follows from that of the underlying NIZK together with the fact that 𝑐 is not a commitment
of any plausible NP statement. The zero knowledge simulator sets 𝑐 to be a commitment of 𝑥∗ and uses
the corresponding randomness to generate a simulated proof. Even given such a proof, there do not exist
accepting proofs of any 𝑥′ ∉ 𝑅𝐿, 𝑥′ ≠ 𝑥∗, by the statistical soundness of the underlying NIZK system and
the perfect binding of the commitment scheme.

NIZK proofs in turn can be constructed from several algebraic assumptions including quadratic resid-
uosity, LWE, factoring, decisional Diffie-Hellman and more.

4.3 Functional Encryption from IO

First, we define functional encryption. Informally, functional encryption allows the release of “partial”
decryption keys, which allows one to reveal specified functions 𝑓 of the underlying plain-text.

Definition 3 (Functional Encryption). A functional encryption scheme is given by a tuple of PPT machines
(Setup,KeyGen,Enc,Dec) satisfying the following conditions:

Correctness. For all polynomial-size circuits 𝑓 and inputs 𝑥 ,

Pr [Dec(sk𝑓 ,Enc(mpk, 𝑥)) = 𝑓 (𝑥)] = 1,

where (mpk, 𝑚𝑠𝑘) ← Setup(1𝜆) and sk𝑓 ← KeyGen(𝑚𝑠𝑘, 𝑓).

Indistinguishable Security (Adaptive). For every (stateful) PPT adversary , there is a negligible func-
tion 𝜇(⋅) and polynomially-bounded 𝑚1(⋅) and 𝑚2(⋅) such that the adversary has advantage at most
𝜇(𝜆) in the experiment

{
Exp𝑏 (1𝜆)

}
𝑏∈{0,1} defined as follows:

1. The challenger runs (mpk, 𝑚𝑠𝑘) ← Setup(1𝜆) and sends mpk to .

2. Adversary  sequentially and adaptively chooses circuits 𝑓𝑖 to send to the challenger, and the
challenger sends back sk𝑓𝑖 ← KeyGen(𝑚𝑠𝑘, 𝑓𝑖) for each 𝑖 ∈ [𝑚1(𝜆)].

3. Adversary sends two inputs 𝑥0, 𝑥1 to the challenger such that 𝑓𝑖(𝑥0) = 𝑓𝑖(𝑥1) for all 𝑖 ∈ [𝑚1(𝜆)].

4. The challenger samples 𝑐 ← Enc(mpk, 𝑥𝑏) and sends 𝑐 to .

8

5. Adversary  sequentially and adaptively chooses more circuits 𝑔𝑖 to send to the challenger, and
the challenger sends back sk𝑔𝑖 ← KeyGen(𝑚𝑠𝑘, 𝑔𝑖) for all 𝑖 ∈ [𝑚2(𝜆)], as long as 𝑔𝑖(𝑥0) = 𝑔𝑖(𝑥1)
for all 𝑖 ∈ [𝑚2(𝜆)].

6. Adversary  concludes by sending some bit 𝑏′ ∈ {0, 1} to the challenger. This bit 𝑏′ is defined as
the output of the experiment.

We define the advantage of to be

|||Pr [Exp

0 (1𝜆) = 1] − Pr [Exp1 (1𝜆) = 1]

||| ,

which we require to be at most 𝜇(𝜆).

One may define a weaker notion of security called selective (indistinguishable) security, where the adversary’s
challenge inputs are declared at the very beginning of the experiment (see e.g. [?] in comparing selective and
adaptive security). Also note that a “master decryption key” can be released by obtaining the decryption key
for the identity function.

A first idea for a construction of functional encryption from IO is to let the functional key of a circuit 𝑓
(represented as a string) be a digital signature of 𝑓 using the master secret key 𝑚𝑠𝑘 as the signing key. An
encryption of a message 𝑚 is the obfuscation of the program 𝑃𝑚,mpk that takes as input (𝑓 , 𝜎) and checks if
𝜎 is a valid signature of 𝑓 under the verification key mpk. If yes, the program outputs 𝑓 (𝑚); otherwise, the
program outputs ⊥. While this is a natural idea, it is unclear how to make it work using IO. The reason,
roughly speaking, is that IO is useful when one can perhaps “puncture the verification key” in some way
to ensure that some 𝑓 ’s do not have any valid signature.

Open Problem 4. Can the above idea go through, perhaps by constructing an appropriate puncturable sig-
nature scheme?

While one may be able to operationalize the above idea, we take a different route here. Assume the exis-
tence of statistically simulation-sound NIZK proof system and a CPA encryption scheme. The construction
works as follows.

1. The setup algorithm generates two public keys PK0, PK1 and the matching private keys SK0, SK1
of a CPA-secure encryption scheme, as well as a common (or structured) random string CRS of a
statistically simulation-sound NIZK proof system. The setup is then

MPK = (PK0, PK1,CRS) and MSK = (SK0, SK1).

2. The encryption algorithm, given 𝑥 , encrypts 𝑥 with both public keys and attaches a NIZK proof that
the two ciphertexts encrypt the same message.

𝐶𝑏 ← Enc(PK𝑏 , 𝑥; 𝑟𝑏) and 𝜋 ← P(CRS, 𝐶0, 𝐶1, 𝑥, 𝑟0, 𝑟1)

3. The key generation algorithm, given MSK and a circuit 𝑓 , writes down a program ΠCRS,SK0,𝑓 that
takes as input (𝐶0, 𝐶1, 𝜋).

9

ΠCRS,SK0,𝑓 (𝐶0, 𝐶1, 𝜋) does the following:

• Verify 𝜋 as a proof that 𝐶0 and 𝐶1 en-
crypt the same message (using CRS).

• If valid, output 𝑓 (Dec(SK0, 𝐶0)).

• Else, output ⊥.

We then define
SK𝑓 = (ΠCRS,SK0,𝑓).

4. The decryption algorithm simply feeds the ciphertext into the secret key SK𝑓 which is the obfuscated
program.

The (selective security) proof proceeds via the following sequence of hybrids.

Hybrid 0. The adversary declares a challenge (𝑥∗, 𝑦∗). Construct 𝐶∗
0 and 𝐶∗

1 by encrypting 𝑥∗ under PK0
and PK1 respectively. Let CRS be the real CRS. Produce a real proof 𝜋.

Hybrid 1. Replace the common reference string with the simulated CRS∗. Produce a simulated proof 𝜋∗.
This is indistinguishable by the ZK property of the proof system.

Hybrid 2. Replace 𝐶∗
1 to be the encryption of 𝑦∗. The proof is still simulated. This is indistinguishable

by CPA-security since SK1 is never used.

Hybrid 3. Replace the functional keys with ones that decrypt using SK1. This is OK because of the IO
guarantee and because the circuits that decrypt using SK0 and SK1 are identical in functionality. Here, we
crucially use the fact that the NIZK proof system is statistically simulation-sound, and that 𝑓 (𝑥∗) = 𝑓 (𝑦∗)
for every function 𝑓 for which the adversary obtains the functional key.

Hybrid 4. Replace 𝐶∗
0 to be the encryption of 𝑦∗. The proof is still simulated. This is indistinguishable

by CPA-security since SK0 is never used.

Hybrid 5. Replace the functional keys with ones that decrypt using SK0. This is OK because of the same
argument as in Hybrid 2 vs 3.

Hybrid 6. Replace the common reference string with the real CRS and the proof with the real proof. This
is indistinguishable by the ZK property of the proof system.

Hybrid 6 is the real game where 𝑦∗ is encrypted instead of 𝑥∗ in Hybrid 0. Since hybrids 0 and 6 are
indistinguishable, we are done.

10

	IO is a ``Best-Possible'' Obfuscation
	An Application: Time-lock Puzzles

	IO Engineering I: Using Puncturable PRFs
	Application: A Different Public-Key Encryption Scheme from IO

	When IO Alone is Not Enough
	Fully Homomorphic Encryption

	IO Engineering II: Using (Zero Knowledge) Proofs
	Bootstrapping IO: From Shallow Circuits to All Circuits
	(Simulation-Sound) NIZK Proofs from NIZK Proofs
	Functional Encryption from IO

