
IO Construction: From XIO to IO

1 A Tool: Randomized Encodings

One tool we will use in the compiler from XIO to IO is efficient randomized encodings.

Definition 1 (Efficient Randomized Encodings, informal). An efficient (𝑇 (𝜆), 𝜖(𝜆))-randomized encoding
scheme (RE.Encode,RE.Eval,RE.Sim) is a tuple of probabilistic algorithms satisfying the following conditions
for all circuits 𝐶 ∶ {0, 1}𝑛 → {0, 1}𝑚 and inputs 𝑥 ∈ {0, 1}𝑛:

Correctness: It holds with probability 1 that

RE.Eval(RE.Encode(1𝜆, 𝐶, 𝑥)) = 𝐶(𝑥)

Security: The distributions RE.Encode(1𝜆, 𝐶, 𝑥) and RE.Sim(1𝜆, 𝐶, 𝐶(𝑥)) cannot be distinguished with prob-
ability greater than 𝜖(𝜆) by any 𝑇 (𝜆)-time distinguisher.1 Note that the distributions are taken just over
the internal randomness of each algorithm.

Efficiency: Let 𝓁 denote the output length of RE.Encode(1𝜆, 𝐶, 𝑥). For each 𝑖 ∈ [𝓁], there is a randomized
circuit

𝐷𝑖 ∶ {0, 1}𝜆+|𝐶|+𝑛 → {0, 1}

such that
𝐷𝑖(1𝜆, 𝐶, 𝑥; 𝑟) = RE(1𝜆, 𝐶, 𝑥; 𝑟)𝑖

for all 𝑟 , and the size of each circuit 𝐷𝑖 is at most poly(𝑛, 𝜆), independently of |𝐶| and 𝑚.

Since we will treat the circuit 𝐶 as fixed, we will sometimes denote RE.Encode(1𝜆, 𝐶, 𝑥; 𝑟) as RE.Encode𝐶(𝑥; 𝑟).

The crucial property for the XIO to IO compiler is efficiency, as that allows one to in some sense “compress”
the size of the circuit if you only care about outputting one bit.

A randomized encoding for all polynomial-size circuits exists assuming one-way functions exist. The
construction we use (“Yao’s garbled circuits”) is attributed to (oral presentations of) Yao [Yao86], but the
security proof was first formalized by Lindell and Pinkas [LP09].

Theorem 2 ([Yao86, LP09]). Assuming the existence of one-way functions, has efficient randomized en-
codings.

We give a quick sketch of the construction, but refer to [LP09] for more details.

Proof sketch. Since we assume the existence of one-way functions, we can assume the existence of a secret-
key encryption scheme (Gen,Enc,Dec) and pseudo-random functions (PRFs). The main idea is as follows.
Suppose 𝐶 is a circuit composed purely of NAND gates (without loss of generality). For each wire 𝑤 in
the circuit (including input and output wires), we will sample encryption keys 𝑘0𝑤, 𝑘1𝑤 ← Gen(1𝜆), where
the key 𝑘𝜎𝑤 corresponds to wire 𝑤 holding logical value 𝜎 ∈ {0, 1}. In our usage of garbled circuits, we will

1One could instead require that the simulator have access to only 𝐶(𝑥) (and not 𝐶), which would make the definition stronger.
By considering the universal circuit, one could achieve this generically at the cost of some blow-up, but the definition we give
suffices for our purposes.

1

actually sample 𝑘0𝑤, 𝑘1𝑤 using randomness from a PRF instead of fresh randomness each time. That is, we
have some global PRF key 𝑘, and we define

𝑘𝜎𝑤 = Gen(1𝜆; PRF𝑘(𝑤||𝜎))

Fix some gate 𝑔 = (𝑎, 𝑏, 𝑐) in the circuit, where 𝑎 and 𝑏 are inputs wires and 𝑐 is an output wire. For
each such 𝑔 ∈ 𝐶, we will let 𝑇𝑔 be the randomly permuted table consisting of the four values

{
Enc𝑘𝜎𝑎𝑎 (Enc𝑘𝜎𝑏𝑏 (𝑘NAND(𝜎𝑎,𝜎𝑏)

𝑐))
}

𝜎𝑎,𝜎𝑏∈{0,1}
.

That is, given 𝑘𝜎𝑎
𝑎 and 𝑘𝜎𝑏

𝑏 , one can use Dec to compute 𝑘NAND(𝜎𝑎,𝜎𝑏)
𝑐 . Intuitively, this allows one to work

up the circuit and keep obtaining keys for wires with their corresponding logical values.
To complete the picture, we also need the input and output encodings. For simplicity of notation, let

in𝑖 denote the 𝑖-th input wire for 𝑖 ∈ [𝑛], and let out𝑗 denote the 𝑗-th output wire for 𝑗 ∈ [𝑚].
The input encoding for bit 𝑖 ∈ [𝑛] will consist of just 𝑘𝑥𝑖in𝑖 , and the output encoding for bit 𝑗 ∈ [𝑚] will

consist of
(𝑘

0
out𝑗

, 𝑘1out𝑗)
in this order, to allow one to know which key corresponds to logical 0 and which corresponds to logical 1.
In full, RE.Encode(1𝜆, 𝐶, 𝑥) will consist of all 𝑇𝑔 (for gates 𝑔 ∈ 𝐶), and all input and output encodings.

The algorithm RE.Evalworks as follows. Starting from the input encodings, we choose some topological
ordering of the gates, and for each gate, we will try decrypting all four possible (double) ciphertexts based
on the keys we have from the input gates (inductively). We can generically modify our encryption protocol
such that with high probability, exactly one of these (double) ciphertexts will give a recognizably valid
decryption, allowing one to obtain exactly one key for the output wire.2 Finally, once reaching the output
tables, we can simply look at the output table and output the corresponding bit based on the key we have.

The simulator RE.Sim will work as follows. For the input wires, the simulator samples 𝑘𝜎in𝑖 ← Gen(1𝜆)
for 𝜎 ∈ {0, 1} as usual, but for each 𝑔 , the table 𝑇𝑔 will now consist of four ciphertexts of 𝑘0𝑐 . That is, the
simulated table will be a random permutation of

{
Enc𝑘𝜎𝑎𝑎 (Enc𝑘𝜎𝑏𝑏 (𝑘0𝑐))

}

𝜎𝑎,𝜎𝑏∈{0,1}
.

Lastly, the output encoding for the 𝑗-th bit is programmed to be

(𝑘
𝐶(𝑥)𝑗
out𝑗 , 𝑘1−𝐶(𝑥)𝑗out𝑗)

to ensure that 𝑘0out𝑗 maps to 𝐶(𝑥)𝑗 . To argue that this is indistinguishable from the randomized encoding
requires a careful hybrid argument [LP09] but ultimately follows from security of the encryption scheme.

Since RE.Encode can generate the garbled table for each gate in parallel, it follows that each output bit
of the randomized encoding in time independent of the number of gates in the circuit.

2Wenote that there exist simple modifications to Yao’s garbled circuits that allows one to evaluate with no error. For simplicity,
we don’t present them here.

2

2 Exponentially Inefficient IO (XIO)

A key step in the construction of indistinguishability obfuscators is to reduce the problem to constructing
a rather weak version of obfuscation that is now called “exponentially efficient” IO, or XIO.3 The reduc-
tions were first formulated as a reduction from constructing IO to constructing a functional encryption
(FE) scheme, and were later refined and refactored into (a) a simple construction of XIO from functional
encryption and (b) a construction of IO from XIO, which we will present now.

The key qualitative statement is this: it is trivial to IO a circuit 𝐶 ∶ {0, 1}𝑛 → {0, 1}𝑚 where the size
of the obfuscated program is 𝑂(2𝑛 ⋅ 𝑚): simply output the truth table. Somewhat surprisingly, essentially
doing any better than this triviality gives us full-fledged IO (with a polynomial-time obfuscator and a
polynomial-size obfuscated program).

We formulate two different versions of XIO: fast-XIO and slow-XIO. The former, fast-XIO, requires
both that the obfuscator runs in time |TT𝐶 |1−𝜖 as well as that the size of the obfuscated circuit is |TT𝐶 |1−𝜖
where TT𝐶 is the truth table of the circuit 𝐶 and 𝜖 > 0 is some constant. The latter, slow-XIO, allows the
obfuscator to run for a long time, that is, polynomial in |TT𝐶 |, but the obfuscated circuit has to be shorter
than the truth table. Both imply IO, with different additional assumptions: fast-XIO plus OWF gives us IO,
whereas slow-XIO requires LWE to give us IO (as far as we know).

2.1 XIO: Two Flavors

Definition 3. For an absolute constant 𝛼 > 0, a probabilistic algorithm XIO is a (𝑇 (𝜆), 𝜖(𝜆))-secure 𝛼-
exponentially efficient obfuscator (or 𝛼-XIO) if it takes as input a Boolean circuit 𝐶 ∶ {0, 1}𝑛 → {0, 1} and
outputs an obfuscated circuit 𝐶 such that:

Functionality: For all 𝑥 ∈ {0, 1}𝑛, 𝐶(𝑥) = 𝐶(𝑥).

Security: For all 𝑛, all poly(2𝑛) ⋅𝑇 (𝜆)-time distinguishers 𝐷, and all pairs of functionally equivalent circuits
𝐶0, 𝐶1 ∶ {0, 1}𝑛 → {0, 1} of the same size,

|| Pr[𝐷(1
𝜆,XIO(𝐶0)) = 1] − Pr[𝐷(1𝜆,XIO(𝐶1)) = 1]|| ≤ 𝜖(𝜆)

Efficiency (size): There is a fixed polynomial function poly such that the size of the obfuscated program 𝐶 is

poly(𝜆, |𝐶|) ⋅ 2(1−𝛼)𝑛 .

Slow-XIO:There is a fixed polynomial function poly such that the runtime of the obfuscatorXIO is poly(𝜆, 2𝑛).4

We will call this variant slow-XIO. Additionally, one could require the following.

Fast-XIO:There is a fixed polynomial function poly such that the runtime of the obfuscator XIO is

poly(𝜆, |𝐶|) ⋅ 2(1−𝛼)𝑛 .

This variant will be referred to as fast-XIO. Note that this requirement subsumes the efficiency condition above.

3The term “exponentially efficient”, in our view, should have been called “exponentially inefficient”, but that is a matter of
personal taste.

4We do not explicitly mention polynomial dependence on |𝐶| here, as |𝐶| ≤ 2𝑛, without loss of generality. Furthermore, note
that the dependence in 𝑛 is poly(2𝑛) = 2𝑂(𝑛), not 2poly(𝑛).

3

Remark We note that restricting our definition to Boolean circuits is intentional as we wish to parame-
terize efficiency guarantees on a single parameter, namely the input length of the circuit, rather than both
the input and output lengths. It is not hard to see that any circuit 𝐶′ ∶ {0, 1}𝑛 → {0, 1}𝑚 can be equivalently
computed as 𝐶(𝑥, 𝑖) = 𝐶′(𝑥)𝑖 where 𝐶 ∶ {0, 1}𝑛 × {0, 1}log𝑚 → {0, 1}.

Remark In the rest of this exposition, we will focus on constructing IO from fast-XIO (and one-way
functions).

3 IO from Fast-XIO and OWF

We present a construction of IO from (sub-exponentially secure) fast-XIO and OWF.

Preparing for the Compiler: Locally Computable XIO. Anticipating our compiler, we will show
how to take any XIO scheme and make it computable in parallel. That is, take any XIO scheme for a
circuit 𝐶 ∶ {0, 1}𝑛 → {0, 1} where both the time to compute the obfuscated program as well as the size of
the obfuscated program are upper-bounded by

size𝑛 = (𝜆 ⋅ |𝐶|)𝛽 ⋅ 2𝑛(1−𝛼) .

where 𝛽 > 0 and 0 < 𝛼 ≤ 1 are constants associated to the XIO scheme.
Something that will come up later is the complexity of computing each bit of the obfuscated program.

A priori, there is no way to bound this beyond the trivial, namely size𝑛. We would like to construct a better
XIO scheme XIO′ where the size of the obfuscated program as well as the time to compute it are slightly
larger, by a factor polynomial in the security parameter, but the complexity of computing each bit of the
obfuscated program is a mere poly(𝜆). These requirements immediately suggest a randomized encoding
scheme, and indeed that is what we will use.

We transform the obfuscator circuit XIO(⋅ ; ⋅) whose size and output length are both upper bounded
by size𝑛, into the circuit

XIO′(𝐶; 𝑟, 𝑟 ′) = RE.EncodeXIO(𝐶, 𝑟 ; 𝑟 ′)
where, on the left, 𝑟 and 𝑟 ′ are treated as the randomness for XIO′ and on the right, one outputs a ran-
domized encoding (RE) of the computation of XIO on input (𝐶, 𝑟), using 𝑟 ′ as the randomness for RE. The
output length of XIO′ is

𝜆𝛽
′
⋅ size𝑛 ≤ (𝜆 ⋅ |𝐶|)𝛽+𝛽

′
⋅ 2𝑛(1−𝛼)

for some constant 𝛽′ > 0. In other words, the obfuscated program becomes slightly larger. However, now,
each output bit of XIO′, i.e. each bit of the obfuscated program, can be computed using a circuit of size
𝜆𝛽′′ for some constant 𝛽′′ > 0 as well.

Let 𝐶′ ← XIO′(𝐶; 𝑟, 𝑟 ′). To evaluate 𝐶′ on input 𝑥:
• first RE-decode 𝐶′ into 𝐶 ∈ XIO(𝐶; 𝑟);

• then evaluate 𝐶 on 𝑥 .
By the simulation security of the randomized encoding, since XIO(𝐶0) ≈𝑐 XIO(𝐶1) for two circuits 𝐶0 ≡
𝐶1, we have ′

0 ≈𝑐 ′
1 as well.

Remark To be completely precise, we need the XIO circuit to be uniform in the sense that given 𝑖, one
can output the 𝑖-th gate of the circuit quickly, i.e. in time independent of the size of the circuit. For the
sake of conciseness of presentation, we elide this important detail here.

4

Figure 1: The construction of IO from XIO. Each Π is a program obfuscated using fast-XIO. The program
Π𝐶,𝑖,𝑥,𝑟𝑥 outputs two programs Π𝐶,𝑖+1,𝑥0,𝑟𝑥0 and Π𝐶,𝑖+1,𝑥1,𝑟𝑥1 . The IO obfuscator itself outputs Π𝐶,0,𝜀,𝑟𝜀 . The
IO evaluator, on input 𝑥 ∈ {0, 1}𝑛, generates programs Π𝐶,𝑖,𝑥𝑖,⋅ iteratively starting from Π𝐶,0,𝜀,𝑟𝜀 . Finally,
computing the program Π𝐶,𝑛,𝑥,⋅ on the empty input results in 𝐶(𝑥).

5

The Compiler. We will henceforth assume that we have a locally computable XIO scheme XIO.
At a high level, the compiler (implicitly!) generates a depth-𝑛 tree of circuits (i.e. with 2𝑛 leaves)

where each program Π𝐶,𝑖,𝐱,𝑟 is parameterized by the circuit 𝐶 in question, an index 𝑖 ∈ {0, 1,… , 𝑛}, a string
𝐱 ∈ {0, 1}𝑖 and a random string 𝑟 ∈ {0, 1}𝜆.

• For 𝑖 = 𝑛, the circuit Π𝐶,𝑛,𝐱,𝑟 takes no input, computes 𝐶 on input 𝐱 and outputs 𝐶(𝐱).

• For 0 ≤ 𝑖 < 𝑛, the circuit Π𝐶,𝑖,𝐱,𝑟 works as follows.
Let size𝑖+1 = |XIO(Π𝐶,𝑖+1,𝐱,𝑟)| denote the size of the obfuscated program at level 𝑖+ 1. Π𝐶,𝑖,𝐱,𝑟 takes as
input a pair (𝑏, 𝑗) ∈ {0, 1} × {0, 1}log size𝑖+1 , and

1. Computes
(𝑟0, 𝑠0, 𝑟1, 𝑠1) ← 𝐺(𝑟)

where 𝐺 ∶ {0, 1}𝜆 → {0, 1}4𝜆 is a PRG; and
2. Outputs the 𝑗 𝑡ℎ bit of the obfuscated program

XIO(Π𝐶,𝑖+1,𝐱||𝑏,𝑟𝑏 ; 𝑠𝑏) .

• Output ′ ← XIO(Π𝐶,0,𝜀,𝑟) for a random string 𝑟 ← {0, 1}𝜆. Here, 𝜀 is the empty string.

Let 𝐱 = 𝑥1𝑥2… 𝑥𝑛 be the bits of 𝐱. To evaluate the obfuscated program on input 𝐱, run ′ on input (𝑥1, ⋆)
to get the obfuscated program Π𝐶,1,𝑥1,⋅. Evaluate that on input (𝑥2, ⋆) to get Π𝐶,2,𝑥1𝑥2,⋅. So on, until you get
Π𝐶,𝑛,𝐱,⋅, evaluating which on an empty input, results in 𝐶(𝐱). Correctness should be clear.

Analysis: Size. Let us analyze the size of Π𝐶,0,𝜀,𝑟 by induction. Note that we want this to be the polyno-
mial in the size of the circuit and the security parameter. Let us start with some notation.

• Let the XIO parameters be (𝛼, 𝛽, 𝛾). That is, the size of an obfuscated circuit 𝐶 on 𝑛 bits of input is
at most

(𝜆 ⋅ |𝐶|)𝛽 ⋅ 2𝑛(1−𝛼)

and each bit of the obfuscated circuit can be computed with a circuit of size 𝜆𝛾 + 𝑛.

• Let Π𝐶,𝑖,𝐱,𝑟 denote the XIO obfuscation of the circuit Π𝐶,𝑖,𝐱,𝑟 .

• Let size𝑖 (resp. size𝑖) denote the size of the circuits Π𝐶,𝑖,𝐱,𝑟 (resp. Π𝐶,𝑖,𝐱,𝑟) for 𝐱 ∈ {0, 1}𝑖.

The base case is the circuits at the leaves. The unobfuscated circuit Π𝐶,𝑛,𝐱,𝑟 , where 𝐱 ∈ {0, 1}𝑛, computes 𝐶
on input 𝐱 and outputs the result. Thus,

size𝑛 = |𝐶|, |TT𝑛| = 1, and size𝑛 = (𝜆 ⋅ size𝑛)𝛽 ⋅ |TT𝑛|1−𝛼 ≤ (𝜆 ⋅ |𝐶|)𝛽

For the induction, assume that the size of the obfuscated circuit at depth 𝑖+1 is size𝑖+1. The program Π𝐶,𝑖,𝐱,𝑟
at depth 𝑖 computes

• The pseudorandom generator 𝐺 on input 𝑟 ∈ {0, 1}𝜆 to get a string of length 4𝜆. Call it (𝑟0, 𝑠0, 𝑟1, 𝑠1).
This takes a circuit of size 𝜆𝛿 for some constant 𝛿 > 0; and

6

• Runs the XIO obfuscator on input (𝑏, 𝑗) and randomness 𝑠𝑏 to produce the 𝑗 𝑡ℎ bit of the obfuscated
circuit Π𝐶,𝑖+1,𝐱||𝑏,𝑟𝑏 . This takes a circuit of size 𝜆𝛾 , by the local computability property of our XIO
scheme. Note that this is where our earlier preparation ends up being useful.

So, the size of Π𝐶,𝑖,𝐱,𝑟 is
size𝑖 ≤ 𝜆𝛿 + 𝜆𝛾 + |𝐶|

and thus, the size of Π𝐶,𝑖,𝐱,𝑟 is

size𝑖 = (𝜆𝛿 + 𝜆𝛾 + |𝐶|)𝛽 ⋅ |TT𝑖|1−𝛼 ≤ (𝜆𝛿 + 𝜆𝛾 + |𝐶|)𝛽 ⋅ (2 ⋅ size𝑖+1)1−𝛼

It is not hard to see (through a tedious calculation) that this is at most

21/𝛼 ⋅ (𝜆𝛿 + 𝜆𝛾 + |𝐶|)𝛽/𝛼 + size𝑖+1 = poly(𝜆, |𝐶|) + size𝑖+1

The point is that the dependence on size𝑖+1 is additive. Thus, the size of Π𝐶,0,𝜀,𝑟 is at most

𝑛 ⋅ 21/𝛼 ⋅ (𝜆𝛿 + 𝜆𝛾 + |𝐶|)𝛽/𝛼 + size𝑛 = 𝑛 ⋅ 21/𝛼 ⋅ (𝜆𝛿 + 𝜆𝛾 + |𝐶|)𝛽/𝛼 + poly(𝜆, |𝐶|) = poly(𝜆, |𝐶|)

as required.

The Tedious Calculation. The essential idea is to analyze the recursion

𝑇 (𝑖) = 𝑐 ⋅ 𝑇 (𝑖 − 1)1−𝛼

to find 𝑇 (𝑛), where 𝑇 (1) = 1, say, and 𝑐 is a constant. Now, 𝑇 (2) = 𝑐 and 𝑇 (3) = 𝑐1+(1−𝛼), 𝑇 (4) =
𝑐1+(1−𝛼)+(1−𝛼)2 , and so on, which converges to 𝑐(𝑛) ≈ 𝑐1/𝛼 .

Analysis: Security. The proof proceeds by a very delicate hybrid argument that proceeds level by level.
Let 𝐶0 ≡ 𝐶1 be two circuits of the same size and functionality.

First, consider the 2𝑛 programs Π𝐶𝑏 ,𝑛,𝐱,𝑟𝐱 for 𝑏 ∈ {0, 1}; that is, leaves of the tree computing either 𝐶0 or
𝐶1. By a straightforward hybrid argument, losing a factor of 2𝑛, we have

(Π𝐶0,𝑛,𝐱,𝑟𝐱 ← XIO(Π𝐶0,𝑛,𝐱,𝑟𝐱))𝐱∈{0,1}𝑛 ≈𝑐 (Π𝐶1,𝑛,𝐱,𝑟𝐱 ← XIO(Π𝐶1,𝑛,𝐱,𝑟𝐱))𝐱∈{0,1}𝑛

where 𝐫𝐱 are randomly chosen. This is the base case. Now, assuming this, we need to show that the 2𝑛−1
programs one level up are also computationally indistinguishable. Towards this, the following lemma is
useful.

Lemma 4 (PIO Lemma). Given a probabilistic circuit 𝐶(𝑥; 𝑟), consider the circuit

𝐷𝐶,𝐾 (𝑥) = 𝐶(𝑥; PRF(𝐾, 𝑥)) .

where PRF is a puncturable PRF. For any two probabilistic circuits 𝐶0 and 𝐶1 such that for every 𝑥 , 𝐶0(𝑥) ≈𝜖
𝐶1(𝑥), we have

(𝐷𝐶0,𝐾) ≈𝑂(2𝑛𝜖) (𝐷𝐶1,𝐾) .

Notice that the lemma loses a factor of 𝑂(2𝑛𝜖) in the distinguishing advantage, i.e. an adversary
that distinguishes the obfuscated program with advantage 𝜖′ will give us an adversary that distinguishes
between the output distributions of the original circuits 𝐶0 and 𝐶1 for some 𝑥 , with advantage 𝜖′/2𝑛 ≪ 𝜖′.
This suggests that the proof should proceed via a hybrid argument with 𝑂(2𝑛) hybrids, which it indeed
does.

7

Proof. We go through hybrids, one input at a time. Consider a hybrid circuit

𝐶(𝑖)(𝑥; 𝑟) =
{

𝐶1(𝑥; 𝑟) if 𝑥 < 𝑖
𝐶0(𝑥; 𝑟) otherwise

so that 𝐶(0) ≡ 𝐶0 and 𝐶(2𝑛) ≡ 𝐶1. Consider

𝐷(𝑖)
𝐶0,𝐶1,𝐾 = 𝐷𝐶(𝑖),𝐾 .

We will show that for all 𝑖 < 2𝑛,
(𝐷(𝑖)

𝐶0,𝐶1,𝐾) ≈𝑐 (𝐷(𝑖+1)
𝐶0,𝐶1,𝐾)

The difference between the programs is that on input 𝑖, the left program computes 𝐶0(𝑖; PRF(𝐾, 𝑖)) and
the right program computes 𝐶1(𝑖; PRF(𝐾, 𝑖)). First, puncture the PRF at 𝑖 and hardcode PRF(𝐾, 𝑖), where
indistinguishability follows from IO security. Next, change the hardcoded PRF value to random, where in-
distinguishability follows from PRF security. Finally, use the indistinguishability of the samples𝐶0(𝑖; 𝑟) and
𝐶1(𝑖; 𝑟) to switch between 𝐶0 and 𝐶1. (Slightly more formally, one would apply these substitutions, swap
𝐶0(𝑖; 𝑟) with 𝐶1(𝑖; 𝑟), and then apply these substitutions backwards to show indistinguishability between
(𝐷(𝑖)

𝐶0,𝐶1,𝐾) and (𝐷(𝑖+1)
𝐶0,𝐶1,𝐾).)

Now, back to the proof of security of the compiler. Since we know that the level-𝑛 programs are
computationally indistinguishable and each level-(𝑛 − 1) program outputs two level-𝑛 programs, we can
use the above lemma to argue that the level-(𝑛 − 1) programs are indistinguishable as well. Continuing
along this way, we get that the root programs are computationally indistinguishable. We lose a factor of

2𝑛 ⋅ 2𝑛−1 ⋅…2 ≈ 2𝑛
2

in security along the way. However, setting the security parameter 𝜆 to be significantly larger than 𝑛2

and assuming the subexponential security of the underlying primitives, i.e. the XIO scheme and the punc-
turable PRF, does the job for us.

References

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party computation.
Journal of cryptology, 22(2):161–188, 2009.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets. In 27th Annual Symposium on
Foundations of Computer Science (sfcs 1986), pages 162–167. IEEE, 1986.

8

	A Tool: Randomized Encodings
	Exponentially Inefficient IO (XIO)
	XIO: Two Flavors

	IO from Fast-XIO and OWF

