6.5630 Advanced Topics in Cryptography Problem Set 1 Due: October 7, 2024

1 Minkowski is Tight [15 points]

Minkowski's theorem is tight for general lattices. In particular, there is a family of lattices $\{\mathcal{L}_n\}_{n\in\mathbb{N}}$ where \mathcal{L}_n lives in *n* dimensions, and √

$$
\lambda_1(\mathcal{L}_n) \ge c \cdot \sqrt{n} \cdot \det(\mathcal{L}_n)^{1/n}
$$

where c is a universal constant independent of n . Show that such a family of lattices exists (your proof doesn't have to construct this family, you merely have to show existence). Hint: Try the SIS lattice. That is, pick a random $A \in \mathbb{Z}_q^{n \times m}$ and look at the lattice $\Lambda^{\perp}(A) := \{x : Ax = 0 \pmod{q}\}$. You can use the following fact: if A has rank *n* over \mathbb{Z}_q , then the determinant of $\Lambda^{\perp}(A)$ is q^n .

Optional. Same problem except show an explicit construction of such a family of lattices $\{\mathcal{L}_n\}_{n\in\mathbb{N}}$.

2 (Our Analysis of) LLL is Tight [15 points]

(For a refresher on the LLL algorithm, look at the notes for Lecture 2.)

Let $\delta = 3/4$. Find a δ -LLL reduced basis $b_1, ..., b_n \in \mathbb{R}^n$ such that b_1 is longer than the shortest vector by a factor of $\Theta(2^{n/2})$. In other words, our analysis of the LLL algorithm using LLL reduced bases is tight.

3 Cheap Gaussian Sampling? [15 points]

Consider the following algorithm for sampling from the zero-centered discrete Gaussian distribution $D_{\ell,s}$. Assume we have a good basis **B** of \mathcal{L} . The algorithm samples a point from the continuous Gaussian distribution $\rho_s(x)/s^n$, rounds it to a nearby lattice point (say, using Babai's rounding algorithm), and outputs the result.

Show that the output of this algorithm is statistically quite far from $D_{\mathcal{L},s}$, even for radii *s* that are polynomially bigger than the length of the given basis. Hint: Try \mathbb{Z} .

4 Spooky Encryption (20 points)

Fully homomorphic encryption tells us how to transform an encrypted input $c \in \mathsf{Enc}_{\mathsf{ok}}(x)$ into an encrypted output $c' \in \text{Enc}_{pk}(f(x))$ for any polynomial-time computable function f. Suppose you are now given

$$
c_1 \in \mathsf{Enc}_{\mathsf{pk}_1}(x_1) \text{ and } c_2 \in \mathsf{Enc}_{\mathsf{pk}_2}(x_2)
$$

for *independent* public keys pk_1 and pk_2 and some x_1, x_2 .

- Could one now compute an encryption of $f(x_1, x_2)$ under either pk_1 or pk_2 ? Show a function f such that being able to do so for any x_1, x_2 will violate the IND-CPA security of the encryption scheme.
- Starting with the GSW FHE scheme we saw in class, construct an FHE scheme where one can produce two ciphertexts c'_1 and c'_2 such that

$$
\mathsf{Dec}_{\mathsf{sk}_1}(c'_1) \oplus \mathsf{Dec}_{\mathsf{sk}_2}(c'_2) = f(x_1, x_2)
$$

5 If Pigs Fly…? [20 points]

The goal of private information retrieval (PIR) is for a client to obtain the *i*'th bit of a database $D \in \{0, 1\}^N$ from server, without the server learning anything about *i*.

Definition 1 (Private Information Retrieval). A PIR scheme consists of four (potentially randomized) algorithms Prep, Query, Resp, and Dec, which are run in the following order:

- 1. Prep. The server preprocesses the dataset by computing $\tilde{D} \leftarrow \text{Prep}(D)$. (This step is done once and for all by the server.)
- 2. Query. To query index $i \in [N]$, the client computes $(q, s) \leftarrow Q$ uery $(i, 1^{\lambda})$ and sends q to the server. (s is some private state that the client keeps to herself.)
- 3. Respond. The server sends $a \leftarrow \text{Resp}(q, \tilde{D})$ back to the client. (Here, Resp has random access to its inputs, so it can potentially run in sublinear time)
- 4. Decode. Client computes $b \leftarrow \text{Dec}(a, s)$.

We require that the scheme has the following two properties:

- Correct: In the notation above, for all i, we have $b = D_i$ with probability one.
- Secure: for all i, i' \in [N], the distributions Query(i, 1^{λ}) and Query(i', 1^{λ}) are computationally indistinguishable.

We ask you to prove the following:

- 1. Show that if no preprocessing is done (i.e., $\tilde{D} = D$) by a PIR scheme, then Resp(q, \tilde{D}) needs to run in $\Omega(N)$ time.
- 2. Assuming a "strongly preprocessable" (defined below) homomorphic encryption scheme exists, construct a PIR scheme where Query, Resp, and Dec run in poly($log N$) time and Prep runs in poly(N) time.

Definition 2 (Strongly Preprocessable Homomorphic Encryption Scheme). A fully homomorphic encryption scheme is strongly preprocessable if there are deterministic algorithms Process and Eval such that both of the following hold:

- given a circuit $C : \{0,1\}^n \to \{0,1\}$ of size s (which can be much larger than n), Process(C) runs in $\operatorname{poly}(s,n)$ -time and outputs a string \tilde{C} , and
- if ct is an encryption of $x \in \{0,1\}^n$, then Eval(ct, \tilde{C}) runs in $\text{poly}(n)$ -time (note this is independent of s!!) and outputs an encryption of $C(x)$. Here, Eval is given random access to $\tilde{C}.$