
6.5630 Advanced Topics in Cryptography
Problem Set 1

Due: October 7, 2024

1 Minkowski is Tight [15 points]

Minkowski’s theorem is tight for general lattices. In particular, there is a family of lattices {𝑛}𝑛∈ℕ where
𝑛 lives in 𝑛 dimensions, and

𝜆1(𝑛) ≥ 𝑐 ⋅
√
𝑛 ⋅ det(𝑛)1/𝑛

where 𝑐 is a universal constant independent of 𝑛. Show that such a family of lattices exists (your proof
doesn’t have to construct this family, you merely have to show existence). Hint: Try the SIS lattice. That
is, pick a random 𝐀 ∈ ℤ𝑛×𝑚

𝑞 and look at the lattice Λ⟂(𝐀) ∶= {𝐱 ∶ 𝐀𝐱 = 0 (mod 𝑞)}. You can use the
following fact: if 𝐀 has rank 𝑛 over ℤ𝑞 , then the determinant of Λ⟂(𝐀) is 𝑞𝑛.

Optional. Same problem except show an explicit construction of such a family of lattices {𝑛}𝑛∈ℕ.

2 (Our Analysis of) LLL is Tight [15 points]

(For a refresher on the LLL algorithm, look at the notes for Lecture 2.)

Let 𝛿 = 3/4. Find a 𝛿-LLL reduced basis 𝐛1, … , 𝐛𝑛 ∈ ℝ𝑛 such that 𝐛1 is longer than the shortest vector by a
factor of Θ(2𝑛/2). In other words, our analysis of the LLL algorithm using LLL reduced bases is tight.

3 Cheap Gaussian Sampling? [15 points]

Consider the following algorithm for sampling from the zero-centered discrete Gaussian distribution 𝐷,𝑠 .
Assume we have a good basis 𝐁 of . The algorithm samples a point from the continuous Gaussian dis-
tribution 𝜌𝑠(𝑥)/𝑠𝑛, rounds it to a nearby lattice point (say, using Babai’s rounding algorithm), and outputs
the result.

Show that the output of this algorithm is statistically quite far from 𝐷,𝑠 , even for radii 𝑠 that are
polynomially bigger than the length of the given basis. Hint: Try ℤ.

4 Spooky Encryption (20 points)

Fully homomorphic encryption tells us how to transform an encrypted input 𝑐 ∈ Encpk(𝑥) into an encrypted
output 𝑐′ ∈ Encpk(𝑓 (𝑥)) for any polynomial-time computable function 𝑓 . Suppose you are now given

𝑐1 ∈ Encpk1(𝑥1) and 𝑐2 ∈ Encpk2(𝑥2)

1



for independent public keys pk1 and pk2 and some 𝑥1, 𝑥2.

• Could one now compute an encryption of 𝑓 (𝑥1, 𝑥2) under either pk1 or pk2? Show a function 𝑓 such
that being able to do so for any 𝑥1, 𝑥2 will violate the IND-CPA security of the encryption scheme.

• Startingwith theGSWFHE schemewe saw in class, construct an FHE schemewhere one can produce
two ciphertexts 𝑐′1 and 𝑐′2 such that

Decsk1(𝑐
′
1) ⊕ Decsk2(𝑐

′
2) = 𝑓 (𝑥1, 𝑥2)

5 If Pigs Fly…? [20 points]

The goal of private information retrieval (PIR) is for a client to obtain the 𝑖’th bit of a database 𝐷 ∈ {0, 1}𝑁

from server, without the server learning anything about 𝑖.

Definition 1 (Private Information Retrieval). A PIR scheme consists of four (potentially randomized) algo-
rithms Prep, Query, Resp, and Dec, which are run in the following order:

1. Prep. The server preprocesses the dataset by computing 𝐷̃ ← Prep(𝐷). (This step is done once and for
all by the server.)

2. Query. To query index 𝑖 ∈ [𝑁 ], the client computes (𝑞, 𝑠) ← Query(𝑖, 1𝜆) and sends 𝑞 to the server. (𝑠 is
some private state that the client keeps to herself.)

3. Respond. The server sends 𝑎 ← Resp(𝑞, 𝐷̃) back to the client. (Here, Resp has random access to its
inputs, so it can potentially run in sublinear time)

4. Decode. Client computes 𝑏 ← Dec(𝑎, 𝑠).

We require that the scheme has the following two properties:

• Correct: In the notation above, for all 𝑖, we have 𝑏 = 𝐷𝑖 with probability one.

• Secure: for all 𝑖, 𝑖′ ∈ [𝑁 ], the distributions Query(𝑖, 1𝜆) and Query(𝑖′, 1𝜆) are computationally indistin-
guishable.

We ask you to prove the following:

1. Show that if no preprocessing is done (i.e., 𝐷̃ = 𝐷) by a PIR scheme, then Resp(𝑞, 𝐷̃) needs to run in
Ω(𝑁) time.

2. Assuming a “strongly preprocessable” (defined below) homomorphic encryption scheme exists, con-
struct a PIR scheme where Query, Resp, and Dec run in poly(log𝑁) time and Prep runs in poly(𝑁 )
time.

Definition 2 (Strongly Preprocessable Homomorphic Encryption Scheme). A fully homomorphic encryp-
tion scheme is strongly preprocessable if there are deterministic algorithms Process and Eval such that both of
the following hold:

• given a circuit 𝐶 ∶ {0, 1}𝑛 → {0, 1} of size 𝑠 (which can be much larger than 𝑛), Process(𝐶) runs in
poly(𝑠, 𝑛)-time and outputs a string 𝐶̃, and

• if 𝑐𝑡 is an encryption of 𝑥 ∈ {0, 1}𝑛, then Eval(𝑐𝑡, 𝐶̃) runs in poly(𝑛)-time (note this is independent of
s‼) and outputs an encryption of 𝐶(𝑥). Here, 𝐸𝑣𝑎𝑙 is given random access to 𝐶̃.

2


	Minkowski is Tight [15 points]
	(Our Analysis of) LLL is Tight [15 points]
	Cheap Gaussian Sampling? [15 points]
	Spooky Encryption (20 points)
	If Pigs Fly...? [20 points]

